#include<iostream>
#include<cstdio>
#include<algorithm>
int main(){
double a,b,c;
while(scanf("%lf%lf%lf",&a,&b,&c)==)
printf("%.5f\n",b*(a+b-)/(a+b)/(a+b-c-));
return ;
}

a/(a+b) 【开始选到牛的概率】 * b/(a+b-c-1) 【开始选到牛的情况下最后选到车的概率】 + b/(a+b) 【开始选到车的概率】 * (b-1)/(a+b-c-1) 【开始选到车的情况下最后选到车的概率】 
=b(a+b-1)/[(a+b)(a+b-c-1)]        by yhx

UVa10491 Cows and Cars的更多相关文章

  1. UVA10491 - Cows and Cars(概率)

    UVA10491 - Cows and Cars(概率) 题目链接 题目大意:给你n个门后面藏着牛.m个门后面藏着车,然后再给你k个提示.在你作出选择后告诉你有多少个门后面是有牛的,如今问你作出决定后 ...

  2. Uva10491 Cows and Cars 【迁移自洛谷博客】

    题目大意 假设有a头牛,b辆车(门的总数为a+b),你先选一个门,然后你最终选择前主持人会替你打开C扇有牛的门(不会打开你已经选择的门),问你要不要换门,输出"总是换门"的策略下, ...

  3. UVa 10491 Cows and Cars (概率&广义三门问题 )

    10491 - Cows and Cars Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onli ...

  4. 10491 - Cows and Cars

    描述:要么全选择牛,要么选择一辆车和p-1头牛,那么剩下n+m-p道门可以选择,求选择p道门以后要选择到车的概率 #include <cstdio> int main() { //freo ...

  5. UVa 10491 - Cows and Cars

    題目:有m+n個們,每個門後面有牛或者車:有n仅仅牛,m輛車,你選擇当中1個: 然後打開当中的k你沒有選中的門後是牛的,問你改變選時得到車的概率. 說明:數學題,概率.全概率公式就可以: 說明:第10 ...

  6. Cows and Cars UVA - 10491 (古典概率)

    按照题目的去推就好了 两种情况 1.第一次选择奶牛的门  概率是 a/(a+b) 打开c扇门后  除去选择的门 还剩 a-1-c+b扇门  则选到车的概率为b/(a-1-c+b) 2.第一次选择车的门 ...

  7. UVa 10491 - Cows and Cars(全概率)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. UVA 10491 Cows and Cars (全概率公式)

    #include<bits/stdc++.h> #include<stdio.h> #include<iostream> #include<cmath> ...

  9. 2019暑期集训第二讲 - 组合数学&概率&数学期望

    A - 容斥原理(CodeForces - 451E) 二进制状态压缩暴力枚举哪几个花选的个数超过了总个数,卢卡斯定理求组合数,容斥原理求答案 可以先把每个花的数量当成无限个,这样就是一个多重集的组合 ...

随机推荐

  1. SAP Cloud for Customer使用移动设备访问系统的硬件要求

    如果用平板电脑的话,推荐的设备列表: Android Samsung Galaxy Tab S2○ Processor: 2 x quad-core CPU -- 1.9 and 1.3 gigahe ...

  2. 1653: Champion of the Swordsmanship

    1653: Champion of the Swordsmanship Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 11  Solved: 8[Subm ...

  3. Python 字典dict 集合set

    字典dict Python内置字典,通过key-value进行存储,字典是无序的,拓展hash names = ['Michael', 'Bob', 'Tracy'] scores = [95, 75 ...

  4. (37)zabbix snmp类型 无需安装agent也能监控

    概述 如果我们需要监控打印机.路由器.UPS等设备,肯定不能使用zabbix agentd,因为他们不能安装软件的,还好他们一般都支持SNMP协议,这样我可以使用SNMP来监控他们.如果你希望使用SN ...

  5. python爬虫基础03-requests库

    优雅到骨子里的Requests 本文地址:https://www.jianshu.com/p/678489e022c8 简介 上一篇文章介绍了Python的网络请求库urllib和urllib3的使用 ...

  6. PAT Basic 1010

    1010 一元多项式求导 设计函数求一元多项式的导数.(注:x^n^(n为整数)的一阶导数为n*x^n-1^.) 输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数). ...

  7. C#中何时使用dynamic

    背景:比如说,有一个方法,有很多参数,且有时候只需要其中的某几个参数,有时候需要使用全部,甚至有时候一个都不需要,这时候写一个长长的参数列表一点都不酷,且容易 出错,这时候就需要考虑C#的dynami ...

  8. webservice 测试地址

    腾讯QQ在线状态 WEB 服务Endpoint: http://www.webxml.com.cn/webservices/qqOnlineWebService.asmx Disco: http:// ...

  9. python 五——自定义线程池

    内容概要: 1.low版线程池 2.绝版线程池 1.low版线程池 设计思路:运用队列queue 将线程类名放入队列中,执行一个就拿一个出来 import queue import threading ...

  10. Ubuntu14.04使用root登陆帐户

    http://jingyan.baidu.com/article/27fa73268144f346f8271f83.html 1.输入sudo gedit /usr/share/lightdm/lig ...