数组开小导致TTTTTLE……

是分数规划,设sm为所有格子价值和,二分出mid之后,用最小割来判断,也就是判断sm-dinic()>=0

这个最小割比较像最大权闭合子图,建图是s像所有点连流量为格子价值的边(相当于最大权闭合子图中的正权点),然后考虑边缘,两个相邻的格子,如果一个选一个不选那么中间这条边就有负的贡献,所以两个相邻的格子之间连两条边权为mid*边权的边,注意是两条,要互相连一下,然后所有边界上的点像t连边权为mid*边界边权的边,相当于假装外面还有一层点全标为t,然后跑最小割判断即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=105;
const double eps=1e-6,inf=1e9;
int n,m,h[N*N],cnt,s,t,id[N][N],tot,le[N*N];
double a[N][N],b[N][N],c[N][N],sm;
struct qwe
{
int ne,to;
double va;
}e[N*N*N];
void add(int u,int v,double w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,double w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>eps&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
double dfs(int u,double f)
{
if(u==t||!f)
return f;
double us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>eps&&le[e[i].to]==le[u]+1)
{
double t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(us<eps)
le[u]=0;
return us;
}
int dinic()
{
double re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
bool ok(double w)
{
memset(h,0,sizeof(h));
cnt=1,s=0,t=n*m+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
ins(s,id[i][j],a[i][j]);
for(int j=1;j<=m;j++)
ins(id[1][j],t,w*b[0][j]),ins(id[n][j],t,w*b[n][j]);
for(int i=1;i<=n;i++)
ins(id[i][1],t,w*c[i][0]),ins(id[i][m],t,w*c[i][m]);
for(int i=1;i<n;i++)
for(int j=1;j<=m;j++)
add(id[i][j],id[i+1][j],w*b[i][j]),add(id[i+1][j],id[i][j],w*b[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<m;j++)
add(id[i][j],id[i][j+1],w*c[i][j]),add(id[i][j+1],id[i][j],w*c[i][j]);
return sm-dinic()>eps;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lf",&a[i][j]),id[i][j]=++tot,sm+=a[i][j];
for(int i=0;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%lf",&b[i][j]);
for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
scanf("%lf",&c[i][j]);
double l=0,r=n*m*100,ans=0;
while(r-l>1e-5)
{
double mid=(l+r)/2;
if(ok(mid))
l=mid,ans=mid;
else
r=mid;
}
printf("%.3f\n",ans);
return 0;
}

bzoj 3232: 圈地游戏【分数规划+最小割】的更多相关文章

  1. BZOJ 3232: 圈地游戏 分数规划+判负环

    3232: 圈地游戏 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 966  Solved: 466[Submit][Status][Discuss] ...

  2. 【BZOJ3232】圈地游戏 分数规划+最小割

    [BZOJ3232]圈地游戏 Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意 ...

  3. bzoj 3232: 圈地游戏

    bzoj 3232: 圈地游戏 01分数规划,就是你要最大化\(\frac{\sum A}{\sum B}\),就二分这个值,\(\frac{\sum A}{\sum B} \geq mid\) \( ...

  4. bzoj 3232 圈地游戏 —— 01分数规划+最小割建图(最大权闭合子图)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 心烦意乱的时候调这道题真是...越调越气,就这样过了一晚上... 今天再认真看看,找出 ...

  5. bzoj 3232: 圈地游戏 01分数规划

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3232 题解: 首先我们看到这道题让我们最优化一个分式. 所以我们应该自然而然地想到01分 ...

  6. bzoj 3232 圈地游戏——0/1分数规划(或网络流)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...

  7. zoj 2676 Network Wars 0-1分数规划+最小割

    题目详解出自 论文 Amber-最小割模型在信息学竞赛中的应用 题目大意: 给出一个带权无向图 G = (V,E), 每条边 e属于E都有一个权值We,求一个割边集C,使得该割边集的平均边权最小,即最 ...

  8. 【洛谷P2494】 [SDOI2011]保密(分数规划+最小割)

    洛谷 题意: 题意好绕好绕...不想写了. 思路: 首先类似于分数规划做法,二分答案得到到每个点的最小危险度. 然后就是在一个二分图中,两边撤掉最少的点(相应代价为上面算出的危险度)及相应边,使得中间 ...

  9. 洛谷2494 [SDOI2011]保密 (分数规划+最小割)

    自闭一早上 分数规划竟然还能被卡精度 首先假设我们已经知道了到每个出入口的时间(代价) 那我们应该怎么算最小的和呢? 一个比较巧妙的想法是,由于题目规定的是二分图. 我们不妨通过最小割的形式. 表示这 ...

随机推荐

  1. Struts2实现空表单信息的提示

    须要的jar包文件: index.jsp源代码: <%@ page language="java" contentType="text/html; charset= ...

  2. Creo二次开发--内存清理函数

    我们在处理模型文件时,总会遇到内存环境的清除问题.一个干净的Creo工作环境.是保证工作能顺利完毕的保障. ProMdlEraseNotDisplayed()函数提供了清除未显示模型的功能. 当须要循 ...

  3. java 的File文件

    文件是计算中一种主要的数据存储形式. 首先介绍一下,绝对路径和相对路径.绝对路径是书写完整路径,相对路径是值书写文件的部分路径.  d:\java\hello.java 就是据对路径.包括完整的路径d ...

  4. 【健康生活】Google、百度之间的选择

    没有什么技术性的分析,仅仅是个人吐槽而已. 一般人遇到问题就会说一句"百度一下",说实话,百度在中国推广的真的非常不错,可谓是家喻户晓,搜索个八卦新闻,小文章,小电影什么的的确非常 ...

  5. Facebook内部高效工作指南

    文章来源: TopDigital http://news.ittime.com.cn/usershow/main?userid=2826 [IT时代网.IT时代周刊编者按]每一个人工作中都会遇到力不从 ...

  6. 按行读入xml文件,删除不需要的行 -Java

    删除挺麻烦的,这里其实只是把需要的行存到arraylist中再存到另一个文件中 import java.io.BufferedReader;import java.io.BufferedWriter; ...

  7. NBUT 1222 English Game(trie树+DP)

    [1222] English Game 时间限制: 1000 ms 内存限制: 131072 K 问题描写叙述 This English game is a simple English words ...

  8. strong and weak 强引用和弱引用的差别

    (weak和strong)不同的是 当一个对象不再有strong类型的指针指向它的时候 它会被释放  ,即使还有weak型指针指向它. 一旦最后一个strong型指针离去 .这个对象将被释放,全部剩余 ...

  9. [RK3288][Android6.0] 调试笔记 --- pmu(rk818)寄存器读写【转】

    本文转载自:http://blog.csdn.net/kris_fei/article/details/76919134 Platform: Rockchip OS: Android 6.0 Kern ...

  10. js中获取时间new date()的用法 获取时间:

    获取时间: 1 var myDate = new Date();//获取系统当前时间 获取特定格式的时间: 1 myDate.getYear(); //获取当前年份(2位) 2 myDate.getF ...