noi,ac第五场部分题解 By cellur925
题目质量还是不错的,只是我太菜了==
T1:序列计数(count)
题目描述
长度为n+1的序列A,其中的每个数都是不大于n的正整数,且n以内每个正整数至少出现一次。
对于每一个正整数k=1,..,n+1,求出的本质不同的长度为k的子序列(不一定要连续)的数量。对10^9+7取模。
输入格式
第一行一个正整数n。
第二行n+1个正整数A1..An+1,描述序列A。
输出格式
n+1行,对于第i行,输出一个整数表示长度为i的本质不同子序列的数量,对10^9+7取模。
样例
input1
3
1 2 1 3
output1
3
5
4
1
explanation
长度为1的子序列有3个:1 ,2 ,3。
长度为2的子序列有5个:11 ,12 ,13,21,23。
长度为3的子序列有4个:121 ,123 ,113,213。
长度为4的子序列有1个:1213。
input2
见样例 ex_count2.in。
output2
见样例 ex_count2.out。
数据范围和约定
对于20%的数据,n≤20。
对于40%的数据,n≤2000。
对于额外20%的数据,保证A中相同的数一定相邻。
对于100%的数据,n≤100000,1≤Ai≤n。
时间限制:1s 空间限制:512MB
读题的时候,我们发现,这个序列有一些优♂美的性质。这个序列中大部分元素都是互异的,只有两个元素是相同的。那么我们就可以以这两个元素为分界,把数列分成三部分。
然后...好像要用到组合数的样子!推推推推推...两个多小时就这样过去了!
所以我都干了什么..........拿计算器一直算算算算算,试图找出规律。后来感觉自己就差一步惹!感觉是与序列第一部分,第三部分有关系的,开始推出的式子是对于i,有
对于n 第三部分元素数 为b,第一部分元素数为a
C(n+1,i)-C(b,i-1)-C(a,i-1)
对于大样例的i==2情况是对的,后来就都不对了...很苦恼
辰哥终于给予了帮助!我与正解其实比较接近了!
正解:
对于n 第三部分元素数 为b,第一部分元素数为a
C(n+1,i)-C(b+a,i-1)
之后开始敲敲敲组合数,开始用的暴力阶乘+费马小定理逆元,大样例会TLE。在Chemist的指导下终于用了预处理阶乘和扩欧逆元,过掉了大样例。但是本地和luoguIDE都能过掉大样例,往OJ上一交就一直输出0??
届时离比赛结束 还有10分钟,我还想打一打T2的60分N²dp,结果现在T1解决不掉,很焦急~!!!
后来(不知怎么)找到了求组合数的那个函数没有返回==!(可是为什么还能过大样例,细思极恐。)
这个故事警示我们,把握好时间&用小黄鸭调试法静读程序。
#include<cstdio>
#include<algorithm>
#include<iostream> using namespace std;
typedef long long ll;
const ll p=1e9+; int n,l,r;
int seq[],pos[],vis[];
ll x,y,fac[]; ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==)
{
x=;
y=;
return a;
}
int gu=exgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
return gu; } ll niyuan(ll hu)
{
x=,y=;
ll tmp=exgcd(hu,p,x,y);
return (x+p)%p;
} ll C(ll k,ll m)
{
ll up=fac[k]%p;
ll down=fac[m]%p*fac[k-m]%p;
ll ans=up*niyuan(down)%p;
return ans;
} void pre()
{
fac[]=;
for(int i=;i<=n+;i++)
fac[i]=(ll)fac[i-]*i%p;
} int main()
{
scanf("%d",&n);
pre();
for(int i=;i<=n+;i++)
{
scanf("%d",&seq[i]);
if(vis[seq[i]]) l=pos[seq[i]],r=i;
vis[seq[i]]=;pos[seq[i]]=i;
}
ll num=n+-r;
num+=l-;
for(int i=;i<=n+;i++)
{
ll cellur=;
if(num>=i-)
cellur=(C(n+,i)+p-C(num,i-))%p;
else
cellur=C(n+,i)%p;
printf("%lld\n",cellur);
}
return ;
}
T2:删数游戏(delete)
题目描述
长度为n的序列A,从中删去恰好k个元素(右边的元素往左边移动),记cnt为新序列中Ai=i的元素个数(即权值与下标相同的元素的个数)。求cnt的最大值。
输入格式
第一行两个正整数n,k,分别表示序列长度,删去元素的个数。
第二行n个正整数A1..An,描述序列A。
输出格式
一行一个整数,表示cnt的最大值。
样例
input1
8 3
1 1 3 2 4 5 7 5
output1
4
explanation
删掉序列中的第44,77,88个数。
input2
见ex_delete2.in。
output2
见ex_delete2.out。
数据范围和约定
对于20%的数据,n≤20。
对于40%的数据,n≤500。
对于60%的数据,n≤5000。
对于80%的数据,n≤100000。
对于100%的数据,n≤1000000,Ai≤1E9,k≤n。
时间限制:1s空间限制:512MB
好像大家都会60分做法dp的样子,就我不会,我太菜了==。
状态还是很好想的,设f[i][j]表示当前到序列下标为i,已经删了j个字符的最大答案数。
转移 写在代码里=w=。
#include<cstdio>
#include<algorithm> using namespace std; int n,k;
int seq[],f[][]; int main()
{
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++) scanf("%d",&seq[i]);
for(int i=;i<=n;i++)
for(int j=;j<=k;j++)
f[i][j]=max(f[i-][j-],f[i-][j]+(seq[i]==i-j));
//f[i-1][j-1]->f[i][j] 第i个被删除了 不能再对答案产生贡献
//f[i-1][j]+_ ->f[i][j]当前没被删除
printf("%d",f[n][k]);
return ;
}
另外关于越界的问题,学长说越界之后就会访问和这个数组存储位置相邻的位置,如果那个位置恰好没被占用,就会对。
正解貌似是二维偏序??不管了不管了溜了溜了。。。
noi,ac第五场部分题解 By cellur925的更多相关文章
- noi.ac 第五场第六场
t1应该比较水所以我都没看 感觉从思路上来说都不难(比牛客网这可简单多了吧) 第五场 t2: 比较套路的dp f[i]表示考虑前i个数,第i个满足f[i]=i的最大个数 i能从j转移需要满足 j< ...
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- [NOI.AC 2018NOIP模拟赛 第三场 ] 染色 解题报告 (DP)
题目链接:http://noi.ac/contest/12/problem/37 题目: 小W收到了一张纸带,纸带上有 n个位置.现在他想把这个纸带染色,他一共有 m 种颜色,每个位置都可以染任意颜色 ...
随机推荐
- 【转载】图说OOP基础(一)
本文用图形化的形式描述OOP的相关知识.对OOP进行系统化的梳理,以便掌握. 涉及知识点: OOP的相关知识 OOP知识[Object-Orientation Programming 面向对象编程]总 ...
- C++中的链式操作
代码编译环境:Windows7 32bits+VS2012. 1.什么是链式操作 链式操作是利用运算符进行的连续运算(操作).它的特点是在一条语句中出现两个或者两个以上相同的操作符,如连续的赋值操作. ...
- ssh命令、ping命令、traceroute 命令所使用的协议
在Node reboot or eviction: How to check if yourprivate interconnect CRS can transmit network heartbea ...
- FZUOJ Problem 2200 cleaning DP
Problem 2200 cleaning Problem Description N个人围成一圈在讨论大扫除的事情,需要选出K个人.但是每个人与他距离为2的人存在矛盾,所以这K个人中任意两个人的距 ...
- 关于Cascading
Cascading是一个开源的Java库和应用程序编程接口(API),它为MapReduce提供了一个抽象层.它允许开发者构建出能在Hadoop集群上运行的复杂的.关键任务的数据处理应用. Casca ...
- Android:在子线程中更新UI的三种方式
①使用Activity中的runOnUiThread(Runnable) ②使用Handler中的post(Runnable) 在创建Handler对象时,必须先通过Context的getMainLo ...
- unzip解压指定我文件夹
解压try.zip中指定的文件夹 unzip try.zip "try/*" shell中异常处理 { # your 'try' block executeCommandWhich ...
- iOS UI控件之间的关系图
- LCS模板
时间复杂度O(m*n) #include <iostream> #include <cstring> #include <cstdlib> #include < ...
- POJ3414 Pots —— BFS + 模拟
题目链接:http://poj.org/problem?id=3414 Pots Time Limit: 1000MS Memory Limit: 65536K Total Submissions ...