D. Gourmet choice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mr. Apple, a gourmet, works as editor-in-chief of a gastronomic periodical. He travels around the world, tasting new delights of famous chefs from the most fashionable restaurants. Mr. Apple has his own signature method of review  — in each restaurant Mr. Apple orders two sets of dishes on two different days. All the dishes are different, because Mr. Apple doesn't like to eat the same food. For each pair of dishes from different days he remembers exactly which was better, or that they were of the same quality. After this the gourmet evaluates each dish with a positive integer.

Once, during a revision of a restaurant of Celtic medieval cuisine named «Poisson», that serves chestnut soup with fir, warm soda bread, spicy lemon pie and other folk food, Mr. Apple was very pleasantly surprised the gourmet with its variety of menu, and hence ordered too much. Now he's confused about evaluating dishes.

The gourmet tasted a set of nn dishes on the first day and a set of mm dishes on the second day. He made a table aa of size n×mn×m, in which he described his impressions. If, according to the expert, dish ii from the first set was better than dish jj from the second set, then aijaij is equal to ">", in the opposite case aijaij is equal to "<". Dishes also may be equally good, in this case aijaij is "=".

Now Mr. Apple wants you to help him to evaluate every dish. Since Mr. Apple is very strict, he will evaluate the dishes so that the maximal number used is as small as possible. But Mr. Apple also is very fair, so he never evaluates the dishes so that it goes against his feelings. In other words, if aijaij is "<", then the number assigned to dish ii from the first set should be less than the number of dish jj from the second set, if aijaij is ">", then it should be greater, and finally if aijaij is "=", then the numbers should be the same.

Help Mr. Apple to evaluate each dish from both sets so that it is consistent with his feelings, or determine that this is impossible.

Input

The first line contains integers nn and mm (1≤n,m≤10001≤n,m≤1000) — the number of dishes in both days.

Each of the next nn lines contains a string of mm symbols. The jj-th symbol on ii-th line is aijaij. All strings consist only of "<", ">" and "=".

Output

The first line of output should contain "Yes", if it's possible to do a correct evaluation for all the dishes, or "No" otherwise.

If case an answer exist, on the second line print nn integers — evaluations of dishes from the first set, and on the third line print mmintegers — evaluations of dishes from the second set.

Examples
input

Copy
3 4
>>>>
>>>>
>>>>
output

Copy
Yes
2 2 2
1 1 1 1
input

Copy
3 3
>>>
<<<
>>>
output

Copy
Yes
3 1 3
2 2 2
input

Copy
3 2
==
=<
==
output

Copy
No
Note

In the first sample, all dishes of the first day are better than dishes of the second day. So, the highest score will be 22, for all dishes of the first day.

In the third sample, the table is contradictory — there is no possible evaluation of the dishes that satisfies it

.题意:问有没有符合条件的n个数和m个数满足矩阵的条件

以下是大神的解答,我还不太会

题解:一看有比较大小,很明显我们可以通过拓扑排序来完成,小的指向大的,每一个数取符合条件的最小的(即指向他的最大的数+1)即可,至于相等的呢,我们就把他们先连接到一块,傻逼了,写错了个地方,并查集连接到一块的只有祖先有值,写成了取父亲的,也是操蛋,。。。。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
int a[];
int pre[];
int n,m;
char s[][];
vector<int> v[];
int in[];
int f(int x)
{
return x==pre[x]?x:pre[x]=f(pre[x]);
}
int main()
{
int ans=;
scanf("%d%d",&n,&m);
for(int i=;i<=;i++) pre[i]=i;
for(int i=;i<=n;i++)
{
scanf("%s",s[i]+);
for(int j=;j<=m;j++)
{
if(s[i][j]=='=')
{
int xx=f(i);
int yy=f(j+);
if(xx==yy) continue;
pre[yy]=xx;
ans++;
}
}
} for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(s[i][j]=='=') continue;
int xx=f(i);
int yy=f(j+); if(s[i][j]=='<')
{
v[xx].push_back(yy);
in[yy]++;
}
else
{
v[yy].push_back(xx);
in[xx]++;
}
}
}
queue<int> q;
for(int i=;i<=n;i++)
{
if(pre[i]==i&&in[i]==)
{
q.push(i);
a[i]=;
ans++;
}
}
for(int i=;i<=m+;i++)
{
if(pre[i]==i&&in[i]==)
{
q.push(i);
a[i]=;
ans++;
}
}
if(q.empty()) printf("No\n");
else
{
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=;i<v[u].size();i++)
{
int to=v[u][i];
in[to]--;
if(a[to]==) a[to]=a[u]+;
else a[to]=max(a[to],a[u]+);
if(in[to]==)
{
ans++;q.push(to);
}
}
}
if(ans!=n+m)
{
printf("No\n");
return ;
}
printf("Yes\n");
for(int i=;i<=n;i++)
{
// cout<<pre[i]<<endl;
if(pre[i]!=i) a[i]=a[f(i)]; printf("%d%c",a[i]," \n"[i==n]);
}
for(int i=;i<=m+;i++)
{
if(pre[i]!=i) a[i]=a[f(i)]; printf("%d%c",a[i]," \n"[i==m+]);
}
}
return ;
}

以下是cf其他的解答

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue> using namespace std;
const int N=; vector<int> v[N];
queue<int> Q;
int n,m,col[N],stk[N],top,cnt,val[N][N],zz[N];
int dfn[N],low[N],ans[N],col_num,f[N],num,d[N];
bool vis[N];
struct Edge{
int u,v,w;
}edge[N*N]; inline void add(int x,int y,int z){
v[x].push_back(y); val[x][y]=z;
} void tarjan(int x){
dfn[x]=low[x]=++num;
stk[++top]=x; vis[x]=; int u;
for(int i=;i<v[x].size();i++){
u=v[x][i];
if(!dfn[u]) tarjan(u),low[x]=min(low[x],low[u]);
else if(vis[u]) low[x]=min(low[x],dfn[u]);
}
if(dfn[x]!=low[x]) return;
col[x]=++col_num; vis[x]=; int lst=x;
while(stk[top]!=x){
col[stk[top]]=col_num;
vis[stk[top]]=;
zz[col_num]+=val[stk[top]][lst];
lst=stk[top]; top--;
} zz[col_num]+=val[lst][x]; top--;
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
char ch=getchar();
while(ch!='=' && ch!='<' && ch!='>') ch=getchar();
if(ch=='<'){
add(i,j+n,);
edge[++cnt].u=i,edge[cnt].v=j+n,edge[cnt].w=;
}
else if(ch=='>'){
add(j+n,i,);
edge[++cnt].u=j+n,edge[cnt].v=i,edge[cnt].w=;
}
else {
edge[++cnt].u=i; edge[cnt].v=j+n; edge[cnt].w=;
edge[++cnt].u=j+n; edge[cnt].v=i; edge[cnt].w=;
add(i,j+n,); add(j+n,i,);
}
}
for(int i=;i<=n+m;i++) if(!dfn[i]) tarjan(i);
for(int i=;i<=col_num;i++)
if(zz[i]>) {puts("No"); return ;}
for(int i=;i<=col_num;i++)
v[i].clear();
memset(val,,sizeof(val));
for(int i=;i<=cnt;i++){
int u=edge[i].u,v=edge[i].v,w=edge[i].w;
if(col[u]==col[v]) continue;
add(col[u],col[v],w); d[col[v]]++;
}
for(int i=;i<=col_num;i++)
if(!d[i]) f[i]=,Q.push(i);
while(Q.size()){
int x=Q.front(); Q.pop();
for(int i=;i<v[x].size();i++){
int u=v[x][i];
f[u]=max(f[u],f[x]+val[x][u]);
d[u]--; if(!d[u]) Q.push(u);
}
}
puts("Yes");
for(int i=;i<=n;i++) printf("%d ",f[col[i]]);
puts("");
for(int i=n+;i<=n+m;i++) printf("%d ",f[col[i]]);
return ;
}

D. Gourmet choice并查集,拓扑结构的更多相关文章

  1. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  2. codeforces #541 D. Gourmet choice(拓扑+并查集)

    Mr. Apple, a gourmet, works as editor-in-chief of a gastronomic periodical. He travels around the wo ...

  3. CF1131D Gourmet choice(并查集,拓扑排序)

    这题CF给的难度是2000,但我感觉没这么高啊…… 题目链接:CF原网 题目大意:有两个正整数序列 $a,b$,长度分别为 $n,m$.给出所有 $a_i$ 和 $b_j(1\le i\le n,1\ ...

  4. Codeforces Round #541 (Div. 2) D(并查集+拓扑排序) F (并查集)

    D. Gourmet choice 链接:http://codeforces.com/contest/1131/problem/D 思路: =  的情况我们用并查集把他们扔到一个集合,然后根据 > ...

  5. Redundant Paths-POJ3177(并查集+双连通分量)

    Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...

  6. UVA1623-Enter The Dragon(并查集)

    Problem UVA1623-Enter The Dragon Accept: 108  Submit: 689Time Limit: 3000 mSec Problem Description T ...

  7. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  8. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

  9. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

随机推荐

  1. 【HDU 1520】 Anniversary Party

    [题目链接] 点击打开链接 [算法] 树形DP 令f[i][0]表示 : 以i为根的子树中,若i不参加宴会,所能获得的最大愉悦值 f[i][1]表示 : 以i为根的子树中,若i参加宴会,所能获得的最大 ...

  2. bzoj 1127 KUP —— 最大子矩形+答案构造

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1127 首先,把权值 > 2*k 的点作为“坏点”,然后在图中用悬线法找权值最大的子矩形 ...

  3. MySQL中怎么查询一张表的列数

    select count(1) from information_schema.columns where table_schema='dbname' and table_name='tbname;

  4. 洛谷 P3625 [APIO2009]采油区域【枚举】

    参考:https://blog.csdn.net/FAreStorm/article/details/49200383 没有技术含量但是难想难写,枚举情况图详见参考blog懒得画了 bzoj蜜汁TTT ...

  5. git修改push的注释信息

    修改还未push的注释: git commit --amend 修改后保存退出. 刚刚push到远端还没有人其他人下载或改动的: git commit --amend进入修改页面修改注释信息,修改后: ...

  6. 深入理解Android

    http://blog.csdn.net/innost/article/details/47254381

  7. Python学习规划

    短时间踏实而高效的学习python 知乎:如何系统的学习python 简书:最全的python学习手册 目录 Python编程语言 python视频教程 Python神经网络算法与深度学习视频教程人工 ...

  8. Navicat无法连接Oracle数据库问题处理一例

    需要通过Navicat连接Oracle数据库进行数据迁移,发现无法连接,报如下错误信息: 按照百度中的说明配置了正确的oci. 此时又报如下错误: 问题解决: 经测试发现与软件的版本有关系,本机的Or ...

  9. Android SQLite(2)如何判断表是否已经存在

    在sql语句中用 if not exists void create_table(){ SQLiteDatabase dbWireter = dbhelper.getWritableDatabase( ...

  10. 445 Add Two Numbers II 两数相加 II

    给定两个非空链表来代表两个非负整数.数字最高位位于链表开始位置.它们的每个节点只存储单个数字.将这两数相加会返回一个新的链表.你可以假设除了数字 0 之外,这两个数字都不会以零开头.进阶:如果输入链表 ...