题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1114

Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 27563    Accepted Submission(s): 13934

Problem Description
Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

 
Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams. 
 
Output
Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.". 
 
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
 
Source
 
 
代码如下:
 //一道纯粹的完全背包。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e3+; int wei[MAXN], val[MAXN], dp[]; int main()
{
int T, n;
scanf("%d", &T);
while(T--)
{
int E, F, W;
scanf("%d%d", &E, &F);
W = F - E; scanf("%d", &n);
for(int i = ; i<=n; i++)
scanf("%d%d", &val[i], &wei[i]); for(int i = ; i<= W; i++)
dp[i] = INF;
dp[] = ;
for(int i = ; i<=n; i++)
for(int j = ; j<=W; j++)
if(j>=wei[i] && dp[j-wei[i]]!=INF )
dp[j] = min(dp[j], dp[j-wei[i]]+val[i]); if(dp[W]!=INF)
printf("The minimum amount of money in the piggy-bank is %d.\n", dp[W]);
else
printf("This is impossible.\n");
}
}
 

HDU1114 Piggy-Bank —— DP 完全背包的更多相关文章

  1. USACO Money Systems Dp 01背包

    一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...

  2. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

  3. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  4. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  5. HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化)

    HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化) 题意分析 首先C表示测试数据的组数,然后给出经费的金额和大米的种类.接着是每袋大米的 ...

  6. HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包)

    HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包) 题意分析 裸完全背包 代码总览 #include <iostream> #include <cstdio& ...

  7. HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)

    HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...

  8. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  9. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  10. POJ.3624 Charm Bracelet(DP 01背包)

    POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...

随机推荐

  1. 67. @Transactional的类注入失败【从零开始学Spring Boot】

    [从零开始学习Spirng Boot-常见异常汇总] Spring的代理模式有两种:java自带的动态代理模式和cglib代理模式,cglib代码模式适用于没有接口的类,而java自带适用于接口类,默 ...

  2. 【ITOO 2】.NET 动态建库建表:使用SQL字符串拼接方式

    导读:在最近接手的项目(高效云平台)中,有一个需求是要当企业用户注册时,给其动态的新建一个库和表.刚开始接手的时候,是一点头绪都没有,然后查了一些资料,也问了问上一版本的师哥师姐,终于有了点头绪.目前 ...

  3. python学习笔记--面向对象的编程和类

    一.面向对象的编程 面向对象程序设计--Object Oriented Programming,简称oop,是一种程序设计思想.二.面向对象的特性类:class类,对比现实世界来说就是一个种类,一个模 ...

  4. hdu 2795线段树

    #include<stdio.h> #define N 200005 int h,w,n; struct node { int x,y,max; }a]; int mmax(int e,i ...

  5. Codeforces 659F Polycarp and Hay【BFS】

    有毒,自从上次选拔赛(哭哭)一个垃圾bfs写错之后,每次写bfs都要WA几发...好吧,其实也就这一次... 小白说的对,还是代码能力不足... 非常不足... 题目链接: http://codefo ...

  6. PAT (Advanced Level) 1037. Magic Coupon (25)

    简单题. #include<iostream> #include<cstring> #include<cmath> #include<algorithm> ...

  7. dpr——设备像素比(device pixel ratio)

    设备像素比 = 物理像素 / 逻辑像素 1.物理像素 显示器上最小的物理显示单元(像素颗粒),在操作系统的调度下,每一个设备像素都有自己的颜色值和亮度值. 例如:手机大小固定,物理像素越高,画面越清晰 ...

  8. FATE---hdu2159(二重背包)

    FATE Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  9. Codeforces 954 D Fight Against Traffic

    Discription Little town Nsk consists of n junctions connected by m bidirectional roads. Each road co ...

  10. Eclipse 中 新建maven项目 无法添加src/main/java 问题

    eclipse创建maven web项目,在选择maven_archetype_web原型后,默认只有src/main/resources这个Source Floder. 按照maven目录结构,添加 ...