题目大意

有两个集合\(S_1,S_2 \subseteq [2,n] (n\leq 500)\),且对于\(\forall x\in S_1,y\in S_2 , gcd(x,y)=1\)

求\(S_1,S_2\)有多少种方案

两种方案不同,当且仅当 方案一的\(S_1\)与方案二的\(S_1\)存在一个元素不同 或 方案一的\(S_2\)与方案二的\(S_2\)存在一个元素不同

题解

当\(n\leq 100\)时,设\(f(A_1,A_2)\)表示当\(S_1\)中所有数的质因子集合为\(A_1\),\(S_2\)中所有数的质因子集合为\(A_2\)时的方案数,枚举2到\(n\)的每个数放到哪个集合里,直接dp

当\(n\leq 500\)时,发现对于每个大于\(\sqrt{n}\)的质数,它作为质因子时的幂次数不超过一

那么对于每个大于\(\sqrt{n}\)的质数,枚举包含它的所有数都被分到\(S_1\)还是\(S_2\),设\(g(i,A_1,A_2)\)表示当包含当前枚举的这个质因数的数都在\(S_i\)里,\(S_1\)中所有数的质因子集合为\(A_1\),\(S_2\)中所有数的质因子集合为\(A_2\)时的方案数,还是直接dp

代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define maxn 510
#define maxs ((1<<8)+7)
#define LL long long
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int n,mod,no[maxn],p[maxn],cntp,bul[maxn][maxn],son[maxn],f[maxs][maxs],f1[maxs][maxs],vis[maxn],f2[maxs][maxs];
signed main()
{
n=read(),mod=read();
rep(i,2,n)
if(!no[i])
{
p[++cntp]=i;
for(int j=i+i;j<=n;j+=i)no[j]=1;
}
rep(i,2,n)
{
int lim=min(8,cntp);
rep(j,1,lim)if(i%p[j]==0)son[i]|=(1<<(j-1));
int f=8;
for(int j=9;j<=cntp&&p[j]<=i;j++)if(i%p[j]==0){f=j;break;}
bul[f][++bul[f][0]]=i;
}
int fulls=(1<<8)-1;f[0][0]=1;
rep(j,1,bul[8][0])
{
int num=bul[8][j];
dwn(s1,fulls,0)
dwn(s2,fulls,0)
{
if(!(son[num]&s2))(f[s1|son[num]][s2]+=f[s1][s2])%=mod;
if(!(son[num]&s1))(f[s1][s2|son[num]]+=f[s1][s2])%=mod;
}
}
rep(i,9,cntp)
{
if(bul[i][0])memcpy(f1,f,sizeof(f)),memcpy(f2,f,sizeof(f));
rep(j,1,bul[i][0])
{
int num=bul[i][j];
dwn(s1,fulls,0)
dwn(s2,fulls,0)
{
if(!(son[num]&s2))(f1[s1|son[num]][s2]+=f1[s1][s2])%=mod;
if(!(son[num]&s1))(f2[s1][s2|son[num]]+=f2[s1][s2])%=mod;
}
}
if(bul[i][0])rep(s1,0,fulls)rep(s2,0,fulls)f[s1][s2]=((f1[s1][s2]+f2[s1][s2]-f[s1][s2])%mod+mod)%mod;//既不放1号集合也不放2号集合的情况算重复了,要减去
}
int ans=0;
rep(s1,0,fulls)rep(s2,0,fulls)(ans+=f[s1][s2])%=mod;
write(ans);
return 0;
}

并不对劲的bzoj4197:loj2131:uoj129:p2150:[NOI2015]寿司晚宴的更多相关文章

  1. BZO4197 & 洛谷2150 & UOJ129:[NOI2015]寿司晚宴——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4197 https://www.luogu.org/problemnew/show/P2150 ht ...

  2. 【uoj129】 NOI2015—寿司晚宴

    http://uoj.ac/problem/129 (题目链接) 题意 给出2~n这n-1个数,求选2个集合,使得从两集合中任意各选取1个数出来它们都互质.求方案数. Solution PoPoQQQ ...

  3. UOJ #129 / BZOJ 4197 / 洛谷 P2150 - [NOI2015]寿司晚宴 (状压dp+数论+容斥)

    题面传送门 题意: 你有一个集合 \(S={2,3,\dots,n}\) 你要选择两个集合 \(A\) 和 \(B\),满足: \(A \subseteq S\),\(B \subseteq S\), ...

  4. p2150 [NOI2015]寿司晚宴

    传送门 分析 我们发现对于大于$\sqrt(n)$的数每个数最多只会包含一个 所以我们把每个数按照大质数的大小从小到大排序 我们知道对于一种大质数只能被同一个人取 所以f1表示被A取,f2表示被B取 ...

  5. 洛谷$P2150\ [NOI2015]$寿司晚宴 $dp$

    正解:$dp$ 解题报告: 传送门$QwQ$. 遇事不决写$dp$($bushi$.讲道理这题一看就感觉除了$dp$也没啥很好的算法能做了,于是考虑$dp$呗 先看部分分?$30pts$发现质因数个数 ...

  6. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  7. [UOJ#129][BZOJ4197][Noi2015]寿司晚宴

    [UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...

  8. [BZOJ4197][Noi2015]寿司晚宴

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 412  Solved: 279[Submit][Status] ...

  9. BZOJ 4197: [Noi2015]寿司晚宴( dp )

    N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...

随机推荐

  1. Leetcode 236.二叉树的最近公共祖先

    二叉树的最近公共祖先 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个结点 x,满足 x ...

  2. BigTable

    Bigtable发布于2006年,启发了无数的NoSQL数据库,比如:Cassandra.HBase等等. Cassandra架构中有一半是模仿Bigtable,包括了数据模型.SSTables以及提 ...

  3. [Poi2011]Meteors 题解

    题目大意: 给定一个环,每个节点有一个所属国家,k次事件,每次对[l,r]区间上的每个点点权加上一个值,求每个国家最早多少次操作之后所有点的点权和能达到一个值. 思路: 整体二分(二分答案),对于每个 ...

  4. ubuntu使用git提交github时,执行pull或者push命令要重新输入用户名和密码

    ubuntu使用git提交github时,执行pull或者push命令要重新输入用户名和密码: 1:问题现象: hlp@hlp:~/code/github_code/catch_imooc1$ git ...

  5. SkyWalking 分布式追踪系统

    随着微服务架构的流行,一些微服务架构下的问题也会越来越突出,比如一个请求会涉及多个服务,而服务本身可能也会依赖其他服务,整个请求路径就构成了一个网状的调用链,而在整个调用链中一旦某个节点发生异常,整个 ...

  6. 【POJ1743】Musical Theme(后缀数组,二分)

    题意:求一个字符串的不重叠最长相同变化的子串 n<=20000 思路:这是一道论文题 我们将原串两两之间作差,可以发现所求的相同变化的子串作出的差相同 问题就转化成了不重叠的最长重复子串 显然答 ...

  7. 2017"百度之星"程序设计大赛 - 初赛(A)数据分割

    n<=100000条相等/不等关系描述<=100000个数,把这些数据分割成若干段使得每一段描述都出现冲突且冲突只出现在最后一行. 相等关系具有传递性,并查集维护:不等关系根据相等关系进行 ...

  8. python学习之-- redis模块操作 集合和有序集合

    redis 模块操作之 集合set和有序集合zset Set 集合操作,不允许重复的列表sadd(name,value):name对应的集合中添加元素scard(name):获取name对应的集合中元 ...

  9. [Bzoj4521][Cqoi2016]手机号码(数位dp)

    4521: [Cqoi2016]手机号码 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 870  Solved: 505[Submit][Status ...

  10. SpringData,JPA,MongoDB,Solr,Elasticsearch底层逻辑关系

    一: Spring-data底层的接口路基: spring-data : PagingAndSortingRepository-> CrudRepository-> Repository ...