文本分析实例---QQ聊天记录分析
对QQ聊天记录进行分析,由于每天产生的聊天记录比較多,所以选取的是从2月份整月的聊天记录数据。分析要产生的结果有三个,聊天记录中发消息的人前top15。统计24小时时间段那个时间段发贴人最多,还有对消息中的热词进行抽取。
对QQ用户发贴次数进行统计,须要注意QQ导出的聊天记录格式。【年月日时分秒 QQ账号相关信息】,须要对聊天记录做解析。另外对聊天内容也要做解析。
详细思路不做详解,仅仅贴结果和部分代码。相信大家一看就明确。
统计24小时时间段QQ消息数量
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
能够看出每天下午3点到5点大家都非常活跃
另一个就是对讨论的话题做分析,首先要对发的消息做分词处理。去掉一个停用词,然后按词频出现的次数统计,得到例如以下结果。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
第一个表示出现的词,第二个表示在某个时间段内出现的次数,总的来说,我们这个群还算是一个技术群吧。
相关部分代码:
def userProcess():
userArray = []
contentArray = LoadUserInfo.loadUser()
for userInfo in contentArray:
if(len(userInfo)==3):
userArray.append(userInfo[2]) print(len(userArray))
#Counter(words).most_common(10)
userGroupInof = Counter(userArray).most_common(15)
#print(userGroupInof) userNameLable = []
postMessageNum = [] for key,value in userGroupInof:
userNameLable.append(key)
postMessageNum.append(value) #performance = 3 + 10 * np.random.rand(len(people))
#error = np.random.rand(len(people)) zh_font = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc') plt.barh(np.arange(len(userNameLable)), postMessageNum, align='center', alpha=0.4)
plt.yticks(np.arange(len(userNameLable)), userNameLable,fontproperties=zh_font)
plt.xlabel('发贴数量',fontproperties=zh_font)
plt.title('java-Endless Space群(4881914)发贴最多的15个人',fontproperties=zh_font) plt.show()
def hourProcess():
hourArray = []
contentArray = LoadUserInfo.loadUser()
for userInfo in contentArray:
if(len(userInfo)==3):
messageDate = userInfo[1]
hourInfo = re.split('[:]',messageDate)
hourArray.append(hourInfo[0]) print(len(hourArray))
#Counter(words).most_common(10)
hour_counts = Counter(hourArray)
#对数据进行排序
sortByHour = sorted(hour_counts.items())
print(sortByHour) postMessageLable = []
postMessageNum = [] for key,value in sortByHour:
postMessageLable.append(key)
postMessageNum.append(value) print(postMessageLable)
print(postMessageNum) #生成发贴柱状图
N = len(postMessageNum) ind = np.arange(N)+0.5 # the x locations for the groups
#print(ind) #x轴上的数值
width = 0.35 # the width of the bars fig, ax = plt.subplots()
rects = ax.bar(ind, postMessageNum, width, color='r') # add some text for labels, title and axes ticks
ax.set_ylabel('message number')
ax.set_title('QQ message number of hour,total message ( '+ str(len(hourArray)) + ")")
ax.set_xticks(ind+width)
ax.set_xticklabels(postMessageLable) def autolabel(rects):
# attach some text labels
for rect in rects:
height = rect.get_height()
ax.text(rect.get_x()+rect.get_width()/2., height, '%d'%int(height), ha='center', va='bottom') autolabel(rects) plt.show()
#对导入的文件第四列做中文分词处理
#对用户发出的消息进行处理 def messageProcess():
wordArray = []
contentArray = LoadMessageInfo.loadMessage()
print("processing original data ........")
for messageInfo in contentArray:
#print(messageInfo[3])
word_list = jieba.cut(messageInfo, cut_all=False)
for word in word_list:
#过滤掉短词,仅仅有一个长度的词
if(len(word)>1):
wordArray.append(word) #print(wordArray)
print("remove stop word data ........")
jsonResource = open('./data/stopword.json','r',encoding='utf8')
stopwords = json.load(jsonResource)
#print(stopwords)
for word in wordArray:
print(word)
if (word in stopwords):
wordArray.remove(word) #print(wordArray)
print("text is processing.......")
word_counts = Counter(wordArray)
print(word_counts)
print("processing is over")
文本分析实例---QQ聊天记录分析的更多相关文章
- QQ聊天记录分析
今天我们用R语言来处理一下.我们会用到一下技术:. (1)正则表达式 (2)词频统计 (3)文本可视化 (4)ggplot2绘图 (5)中文分词 一.数据处理 首先我们要讲QQ聊天记录导出成txt文件 ...
- 如何找回QQ聊天记录、语音、图片?
多图长图预警,本教程适用于 安卓手机 认真仔细看完答案的成功几率翻倍哟! 请各位认真看答案!求您了~ 2020年/4/4日 更新 人民不会忘记,祖国不会忘记,我们不会忘记,先烈不朽. 调整答案顺序,使 ...
- 用python做些有意思的事——分析QQ聊天记录——私人订制
之前,写了这篇文章,用python提取全部群成员的发言时间,并简单做了下分析.先补充一下,针对特定单个群成员(这里以 小小白 为例)消息记录的获取. 代码比较简单,主要是正则表达式的书写.(附: ...
- 用python做些有意思的事——分析QQ聊天记录
####################################### 已更新续集,戳这里. ######################################## 是这样的,有位学 ...
- 协议分析之qq协议---qq登录
QQ 协议分析:获取各类登录会话密钥 我们知道QQ的一些会话密钥是在登录过程中生成的,尤其是Session Key,有了它便可以解密出聊天文本内容.本文主要是了解一下QQ的加密机制,首先是用嗅探工具W ...
- JavaBean 基础概念、使用实例及代码分析
JavaBean 基础概念.使用实例及代码分析 JavaBean的概念 JavaBean是一种可重复使用的.且跨平台的软件组件. JavaBean可分为两种:一种是有用户界面的(有UI的):另一种是没 ...
- Oracle dbms_lock.sleep()存储过程使用技巧-场景-分析-实例
<Oracle dbms_lock.sleep()存储过程使用技巧>-场景-分析-实例 摘要:今天是2014年3月10日,北京,雾霾,下午组织相关部门开会.会议的结尾一名开发工程师找到了我 ...
- [软件逆向]实战Mac系统下的软件分析+Mac QQ和微信的防撤回
0x00 一点废话 最近因为Mac软件收费的比较多,所以买了几款正版软件,但是有的软件卖的有点贵,买了感觉不值,不买吧,又觉得不方便,用别人的吧,又怕不安全.于是我就买了正版的Hopper Di ...
- ELK 日志分析实例
ELK 日志分析实例一.ELK-web日志分析二.ELK-MySQL 慢查询日志分析三.ELK-SSH登陆日志分析四.ELK-vsftpd 日志分析 一.ELK-web日志分析 通过logstash ...
随机推荐
- jquery插件编写【转载】
如今做web开发,jquery 几乎是必不可少的,就连vs神器在2010版本开始将Jquery 及ui 内置web项目里了.至于使用jquery好处这里就不再赘述了,用过的都知道.今天我们来讨论下jq ...
- x86实模式到保护模式 李忠 王晓波
x86实模式到保护模式 李忠 王晓波 第3到4章 各个进制间的转换省略 实验环境 编译器 nasm 虚拟机 virtual box 小程序 hexview 观察编译后的机器代码 fixvhd ...
- BNUOJ 6727 Bone Collector
Bone Collector Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Origin ...
- 【JavaScript 4—基础知识点】:函数
导读:函数这个东西,从VB开始就一直在用,不过那时候一般写不出来自己的函数或者类,觉得最高大上的,就是调用API函数了.现在,学习到了JavaScript,总结总结函数,显得很有必要.这篇文章,就从最 ...
- [UOJ#219][BZOJ4650][Noi2016]优秀的拆分
[UOJ#219][BZOJ4650][Noi2016]优秀的拆分 试题描述 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 A 和 B 是任意非空字符串,则我们称该字符串的这种拆分是优秀 ...
- KD-Tree 的笔记
声明: 蒟蒻对于 KD-Tree 的一点理解,写在博客里面作为笔记. 1.KD-Tree 的定义 1)关于 K-D KD-Tree 中的 D 即为 Dimension ,意思也就是维度. 所以 KD- ...
- Java程序性能优化之缓冲优化
优化前的代码: package com; import javax.swing.*; import java.awt.*; /** * 使用Eclipse,右键Run As,Java Applet运行 ...
- 解决centos7中ens33中不显示IP等问题
在虚拟机中安装centos7,输入ifconfig显示command not found.在sbin目录中发现没有ifconfig文件,这是因为centos7已经不使用 ifconfig命令了,已经用 ...
- Laravel 修改操作
增加路由: Route::any('Student/update/{id}',['uses'=>'StudentController@update']); 控制器代码:(Request $req ...
- android中自定义下拉框(转)
android自带的下拉框好用不?我觉得有时候好用,有时候难有,项目规定这样的效果,自带的控件实现不了,那么只有我们自己来老老实实滴写一个新的了,其实最基本的下拉框就像一些资料填写时,点击的时候出现在 ...