bzoj1951 [Sdoi2010]古代猪文 ——数论综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951
题意就是要求 G^( ∑(k|n) C(n,k) ) % p,用费马小定理处理指数,卢卡斯定理处理大组合数,取模用中国剩余定理合并;
好想难写的感觉(其实也不难写?);
关于中国剩余定理,可以看这篇博客:https://www.cnblogs.com/MashiroSky/p/5918158.html
第一次写中国剩余定理合并模数,还有一点好不容易理解的地方,写在注释里。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll n,g,p=,t[]={,,,},r[],fac[][];
ll pw(ll a,int b,int mod)
{
// a%=mod;//可有可无
ll ret=;
for(;b;b>>=,(a*=a)%=mod)
if(b&) (ret*=a)%=mod;
return ret;
}
ll C(int n,int m,int k)
{
if(n<m)return ;
return (fac[k][n]*pw(fac[k][m]*fac[k][n-m],t[k]-,t[k]))%t[k];
}
ll Lucas(ll n,ll m,int k)
{
if(m==)return ;//!
return (C(n%t[k],m%t[k],k)*Lucas(n/t[k],m/t[k],k))%t[k];
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==){x=; y=; return;}
exgcd(b,a%b,x,y);
ll t=x; x=y; y=t-a/b*y;
}
int CRT()
{
ll M=t[],R=r[],x,y;
for(int i=;i<;i++)
{
exgcd(M,t[i],x,y);
x=((r[i]-R)%t[i]*x%t[i]+t[i])%t[i];//%t[i]!(CRT取通解方法) //不能是R-r[i]!因为求到的x对于r[i]-R来说是正的,否则需要取一下负
R+=M*x;
M*=t[i];
}
return R;
}
int main()
{
scanf("%lld%lld",&n,&g);
if(g==p)//!!!
{
printf(""); return ;
}
for(int i=;i<;i++)
{
fac[i][]=;
for(int j=;j<=t[i];j++)
fac[i][j]=(fac[i][j-]*j)%t[i];
}
for(int j=;j<;j++)
for(int i=;i*i<=n;i++)//
if(n%i==)
{
(r[j]+=Lucas(n,i,j))%=t[j];
if(i*i!=n) (r[j]+=Lucas(n,n/i,j))%=t[j];
}
int ans=CRT();
printf("%lld",pw(g,ans,p));
return ;
}
bzoj1951 [Sdoi2010]古代猪文 ——数论综合的更多相关文章
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】
题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...
- BZOJ1951[SDOI2010]古代猪文
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...
- bzoj 1951 [Sdoi2010]古代猪文 ——数学综合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 数学综合题. 费马小定理得指数可以%999911658,又发现这个数可以质因数分解.所 ...
- bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)
https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...
随机推荐
- localStorage前端存储数据
<!DOCTYPE html> <html> <head> <title>localStorage演示</title> <meta c ...
- Python学习-while循环练习
1.计算1-100的和 i = 1; total = 0; while i <= 100: total = total + i; i = i + 1; print(total); 2.打印出1- ...
- http怎么做自动跳转https
Nginx版本 server { listen 80; server_name localhost; rewrite ^(.*)$ https://$host$1 permanent; ...
- 59.关系型与document类型数据模型对比
现假设有如下两个类: class Department(object): def __init__(self, dept_id, name, desc, employees=[]): self.dep ...
- jmeter录制火狐浏览器
昨天看youtube,居然发现有这功能,啊哈哈 听不懂英语 也能有收获. 一.Jmeter 文件中选择Templates->Recording 二.创建之后,自动出现一个模板: 1. Threa ...
- SERE0014: Illegal HTML character: decimal 154
问题:jmeter,生成报告转化成html,报错SERE0014: Illegal HTML character: decimal 154 原因: 某些字符,特别是控制字符#x7F-#x9F ,在XM ...
- mysql数据库变更监控(canal)
背景: 1. 一些项目的基础功能会有Audit Trace, 以记录系统用户所做过的所有记录. 2. 实时备份数据,比如mysql主从复制,一个用于面向应用,一个用于对应用数据库的实时备份. 3. 实 ...
- 超级钢琴(codevs 2934)
题目描述 Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音 ...
- [COGS311] Redundant Paths
★★☆ 输入文件:rpaths.in 输出文件:rpaths.out 简单对比 时间限制:1 s 内存限制:128 MB Description In order to get fro ...
- spark之scala快速入门
scala和java都是在jvm之上的语言,相对来讲,scala热度比较低,其实并不是一个特别好的语言选择. 原因倒不是因为scala本身的缺点,而是使用人群不够多,论坛和社区不够活跃.这就跟社交软件 ...