如果一个质数,在质数列表中的编号也是质数,那么就称之为质数中的质数。例如:3 5分别是排第2和第3的质数,所以他们是质数中的质数。现在给出一个数N,求>=N的最小的质数中的质数是多少(可以考虑用质数筛法来做)。

 
Input
输入一个数N(N <= 10^6)
Output
输出>=N的最小的质数中的质数。
Input示例
20
Output示例
31
解:
最初版本 15 ms 9812 KB
 #include <stdio.h>
#define MAXN 2000000
int vis[MAXN]={1,1}, pri[MAXN]; int phi(int n)
{
for (int i = , m = ; i < MAXN; i++)
{
if (vis[i] == )
{
pri[m++] = i;
if (i >= n && vis[m] == ) return pri[m - ];
}
for (int j = ; j < m; j++)
{
if (i * pri[j] > MAXN) break;
vis[i * pri[j]] = ;
if (i%pri[j] == ) break;
}
}
} int main()
{
int n;
while (scanf_s("%d", &n) != EOF) printf("%d\n", phi(n));
return ;
}

卡数据范围 15 ms 5904 KB

 #include <stdio.h>
#define MAXN 1000200
int vis[MAXN]={1,1}, pri[]

变数据类型 15 ms 2976 KB

 #include <stdio.h>
#define MAXN 1000200
char vis[MAXN]={1,1};
int pri[]

(数论 欧拉筛法)51NOD 1181 质数中的质数(质数筛法)的更多相关文章

  1. 数论-欧拉函数-LightOJ - 1370

    我是知道φ(n)=n-1,n为质数  的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心—— ...

  2. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  3. (数论 欧拉筛法)51NOD 1106 质数检测

    给出N个正整数,检测每个数是否为质数.如果是,输出"Yes",否则输出"No".   Input 第1行:一个数N,表示正整数的数量.(1 <= N &l ...

  4. 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法

    http://www.lydsy.com/JudgeOnline/problem.php?id=2190   裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...

  5. BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)

    今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...

  6. Codeforces_776E: The Holmes Children (数论 欧拉函数)

    题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...

  7. bzoj 2818 GCD 数论 欧拉函数

    bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Samp ...

  8. Codeforces 776E: The Holmes Children (数论 欧拉函数)

    题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...

  9. 数论 - 欧拉函数模板题 --- poj 2407 : Relatives

    Relatives Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11372   Accepted: 5544 Descri ...

随机推荐

  1. loj6171/bzoj4899 记忆的轮廊(期望dp+优化)

    题目: https://loj.ac/problem/6171 分析: 设dp[i][j]表示从第i个点出发(正确节点),还可以有j个存档点(在i点使用一个存档机会),走到终点n的期望步数 那么 a[ ...

  2. 学习Android从青铜到王者之第一天

    1.Android四层架构 一.Linux Kernel 二.Libraries和Android Runtime 三.Application Framework 四.Applications 一.Li ...

  3. 【effective c++】模板与泛型编程

    模板元编程:在c++编译器内执行并于编译完成时停止执行 1.了解隐式接口和编译期多态 面向对象编程总是以显式接口(由函数名称.参数类型和返回类型构成)和运行期多态(虚函数)解决问题 模板及泛型编程:对 ...

  4. Hibernate复习之Hibernate基本介绍

    众所周知.眼下流行的面向对象的对象关系映射的Java持久层框架有MyBatis和Hibernate.他们都是对象关系映射ORM. 解决的主要问题就是对象-关系的映射.域模型和关系模型都分别建立在概念模 ...

  5. poj 1695 Magazine Delivery 记忆化搜索

    dp[a][b][c],表示三个人从小到大依次在a,b.c位置时.距离结束最少的时间. 每次选一个人走到c+1位置搜索就好了. 坑点在于不能floyd.预计题目没说清楚.意思就是假设没送Li,那么Li ...

  6. 笔记本 ThinkPad E40 安装 Mac OS X 10.9.3 Mavericks 系统

    关于:自己最早接触Mac OS X系统是在一个论坛里.记得好像是2011年:那时论坛里就有人在虚拟机上执行Mac OS X 10.7系统.当时也依照论坛里的方法在虚拟机上成功装上了系统.那时開始就被苹 ...

  7. spring实战笔记6---springMVC的请求过程

    之前有一次在面试其中被问到了这个问题.当时说得不是非常清楚,有些细节的地方想不起来了.所以在这里从新回想和总结一下SpringMVC的起步.请求的运行过程. 在SpringMVC其中.跟请求(Requ ...

  8. 使用正則表達式的格式化与高亮显示json字符串

    使用正則表達式的格式化与高亮显示json字符串 json字符串非常实用,有时候一些后台接口返回的信息是字符串格式的,可读性非常差,这个时候要是有个能够格式化并高亮显示json串的方法那就好多了,以下看 ...

  9. 用bis和bic实现位级操作

    20世纪70年代末至80年代末,DigitalEquipment的VAX计算机是一种非常流行的机型.它没有布尔运算AND和OR指令,仅仅有bis(位设置)和bic(位清除)这两种指令.两种指令的输入都 ...

  10. Linux 下的编辑/编译器

    linux 首先有两个重量级的文本编辑器:vim 和 emacs 此外有如下三种比较好的开放环境: 1.Anjuta Anjuta DevStudio 的官方地址:http://anjuta.sour ...