题意:求解方程ax+by+c=0,在区间x1->x2和y1->y2的解的个数。

看似简单,真心a的不容易啊!

开始跪于第8组数据,原因是没用long long !后来改了,跪于12组,超时,于是,换方法,求出x的解,对应到y

,然后算在y1,y2的解有几个(不要用枚举法,算有几个就行)。竟然又跪于第4组数据!!哎,弱爆了。

才发现,x对应过去的y,x递增,y未必也递增,也未必递减啊!!

做线方程总结:

先判断有无解,再约分后得 ax+by=c,用扩展欧几里得求得ax+by=1的一解,x=x*c,y=y*c,便是原方程一组解了,

每俩个相邻解x,相差|b|,同理,y差|a|,然后就是看题目要求了,见招拆招了,如想要到去某点附近的解,

可以 x=x-(x1-x)/abs(b)*abs(b);(可能左右)。

#include<iostream>
#include<cmath>
using namespace std;
long long gcd(long long a,long long b)
{
return b==0?a:gcd(b,a%b);
}
void exgcd(long long a,long long b,long long &x,long long &y)
{
if(b==0){x=1;y=0;}
else
{
exgcd(b,a%b,y,x);y=y-x*(a/b);
}
}
inline long long getabs(long long a)
{
return a<0?-a:a;
}
int main()
{
long long a,b,c,x1,x2,y1,y2;
cin>>a>>b>>c>>x1>>x2>>y1>>y2;
long long x,y;
c=-c; //移项
if(x1>x2||y1>y2){cout<<0<<endl;return 0;} //排除无解的情况
if(a==0&&b==0) //特殊情况讨论
{
long long ans=0;
if(c==0)
{
ans=(x2-x1+1)*(y2-y1+1); //此处任意组合都可以
}
cout<<ans<<endl;
return 0;
}
if(a==0)
{
if(c%b!=0){cout<<0<<endl;return 0;}
else
{
y=c/b;
if(y>=y1&&y<=y2)
cout<<x2-x1+1<<endl;
else cout<<0<<endl;
return 0;
}
}
if(b==0)
{
if(c%a!=0){cout<<0<<endl;return 0;}
else
{
x=c/a;
if(x>=x1&&x<=x2)cout<<y2-y1+1<<endl;
else cout<<0<<endl;
return 0;
}
}
long long g=getabs(gcd(a,b));
if(c%g!=0){cout<<0<<endl;return 0;}
a=a/g;b=b/g;c=c/g; //约去最大公约数 exgcd(a,b,x,y); //求得一组解
x=x*c;
y=y*c; //原方程一组解
x=x-(x-x1)/getabs(b)*getabs(b); //得与x1最近的一解x(x>=x1)
while(x<x1)x+=getabs(b);
if(x>x2){cout<<0<<endl;return 0;}
long long xx=x+(x2-x)/getabs(b)*getabs(b); //解x->xx(x>=x1,xx<=x2)
y=(c-a*x)/b; //对应yy,y,注意,此处yy,y大小不知道!!
long long yy=(c-a*xx)/b;
long long ans=0;
/* while(x<=xx) //若用枚举解,超时
{
if(y>=y1&&y<=y2)ans++;
x+=getabs(b);
y=(c-a*x)/b;
}*/
if(yy>y){long long temp=y;y=yy;yy=temp;} //大小决定一下
if(yy<y1) //取在区间y1->y2之间的解。(y,yy为边界解)
{
yy=yy+(y1-yy)/getabs(a)*getabs(a);
while(yy<y1)yy+=getabs(a);
}
if(y2<y)
{
y=y-(y-y2)/getabs(a)*getabs(a);
while(y>y2)y-=getabs(a);
}
if(y>=yy)
ans=(y-yy)/getabs(a)+1;
cout<<ans<<endl;
}

SGU 106 在区间范围内的线性方程解个数的更多相关文章

  1. 扩展欧几里德 SGU 106

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106   题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...

  2. SGU 106 The equation

    H - The equation Time Limit:250MS     Memory Limit:4096KB     64bit IO Format:%I64d & %I64u Subm ...

  3. HDU4622:Reincarnation(后缀数组,求区间内不同子串的个数)

    Problem Description Now you are back,and have a task to do: Given you a string s consist of lower-ca ...

  4. echarts renderItem-在区间段内展示连续数据

    一.需求背景: 贴图说明:要求数据在不同类型的区间段内展示. 二.实现思路及代码 实现方法: 利用echarts的自定义配置:option.series[i].type='custom'中的rende ...

  5. 区间求小于等于k的数字个数 hdu4177

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4417 题目意思给出一个序列,叫我们求一个区间里面小于等于k的数字个数. 这里面我用分块和主席树两种方法 ...

  6. hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙

    /** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...

  7. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  8. “全栈2019”Java第一百零一章:局部内部类覆盖作用域内成员详解

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  9. HDU 4417.Super Mario-可持久化线段树(无修改区间小于等于H的数的个数)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. MFC:AfxLoadLibrary-将指定的 DLL 映射到调用进程的地址空间

    Visual Studio 2012 - Visual C++ LoadLibrary 和 AfxLoadLibrary 进程调用 LoadLibrary (或 AfxLoadLibrary) 以显式 ...

  2. 【C语言项目】贪吃蛇游戏(下)

    目录 00. 目录 07. 游戏逻辑 7.5 按下ESC键结束游戏 7.6 判断是否撞到墙 7.7 判断是否咬到自己 08. 游戏失败界面设计 8.1 游戏失败界面边框设计 8.2 撞墙失败界面 8. ...

  3. jquery动态实现填充下拉框

    当点下拉框时动态加载后台数据. 后台代码 protected void doPost(HttpServletRequest request, HttpServletResponse response) ...

  4. struts1标签库

    Struts提供了五个标签库,即:HTML.Bean.Logic.Template和Nested. HTML标签 : 用来创建能够和Struts 框架和其他相应的HTML 标签交互的HTML 输入表单 ...

  5. Ukulele 原来你也在这里

  6. baidumap demo(三)

    定位 您可以通过以下代码来开启定位功能: 源码复制打印关于 //开启定位功能 [_mapView setShowsUserLocation:YES]; 定位成功后,可以通过mapView.userLo ...

  7. MAC实现睡眠和休眠唤醒

    因为苹果默认为休眠文件加密,Clover 是无法解密的.所以需要经过一些设置才能破除这无节操的加密文件sleepimage.在这之前不得不提下EmuVariableUefi-64.efi 这个驱动.我 ...

  8. 【数位dp】bzoj1833: [ZJOI2010]count 数字计数

    数位dp姿势一直很差啊:顺便庆祝一下1A Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a ...

  9. aggregate和annotate使用

    aggregate和annotate方法的使用场景 Django的aggregate和annotate方法属于高级查询方法,主要用于组合查询,是Django高手们必需要熟练掌握的.当我们需要对查询集( ...

  10. SQLAlchemy常用操作

    Models 只是配置和使用比较简单,因为他是Django自带的ORM框架,也正是因为是Django原生的,所以兼容性远远不如SQLAlchemy 真正算得上全面的ORM框架必然是我们的SQLAlch ...