SGU 106 在区间范围内的线性方程解个数
题意:求解方程ax+by+c=0,在区间x1->x2和y1->y2的解的个数。
看似简单,真心a的不容易啊!
开始跪于第8组数据,原因是没用long long !后来改了,跪于12组,超时,于是,换方法,求出x的解,对应到y
,然后算在y1,y2的解有几个(不要用枚举法,算有几个就行)。竟然又跪于第4组数据!!哎,弱爆了。
才发现,x对应过去的y,x递增,y未必也递增,也未必递减啊!!
做线方程总结:
先判断有无解,再约分后得 ax+by=c,用扩展欧几里得求得ax+by=1的一解,x=x*c,y=y*c,便是原方程一组解了,
每俩个相邻解x,相差|b|,同理,y差|a|,然后就是看题目要求了,见招拆招了,如想要到去某点附近的解,
可以 x=x-(x1-x)/abs(b)*abs(b);(可能左右)。
#include<iostream>
#include<cmath>
using namespace std;
long long gcd(long long a,long long b)
{
return b==0?a:gcd(b,a%b);
}
void exgcd(long long a,long long b,long long &x,long long &y)
{
if(b==0){x=1;y=0;}
else
{
exgcd(b,a%b,y,x);y=y-x*(a/b);
}
}
inline long long getabs(long long a)
{
return a<0?-a:a;
}
int main()
{
long long a,b,c,x1,x2,y1,y2;
cin>>a>>b>>c>>x1>>x2>>y1>>y2;
long long x,y;
c=-c; //移项
if(x1>x2||y1>y2){cout<<0<<endl;return 0;} //排除无解的情况
if(a==0&&b==0) //特殊情况讨论
{
long long ans=0;
if(c==0)
{
ans=(x2-x1+1)*(y2-y1+1); //此处任意组合都可以
}
cout<<ans<<endl;
return 0;
}
if(a==0)
{
if(c%b!=0){cout<<0<<endl;return 0;}
else
{
y=c/b;
if(y>=y1&&y<=y2)
cout<<x2-x1+1<<endl;
else cout<<0<<endl;
return 0;
}
}
if(b==0)
{
if(c%a!=0){cout<<0<<endl;return 0;}
else
{
x=c/a;
if(x>=x1&&x<=x2)cout<<y2-y1+1<<endl;
else cout<<0<<endl;
return 0;
}
}
long long g=getabs(gcd(a,b));
if(c%g!=0){cout<<0<<endl;return 0;}
a=a/g;b=b/g;c=c/g; //约去最大公约数 exgcd(a,b,x,y); //求得一组解
x=x*c;
y=y*c; //原方程一组解
x=x-(x-x1)/getabs(b)*getabs(b); //得与x1最近的一解x(x>=x1)
while(x<x1)x+=getabs(b);
if(x>x2){cout<<0<<endl;return 0;}
long long xx=x+(x2-x)/getabs(b)*getabs(b); //解x->xx(x>=x1,xx<=x2)
y=(c-a*x)/b; //对应yy,y,注意,此处yy,y大小不知道!!
long long yy=(c-a*xx)/b;
long long ans=0;
/* while(x<=xx) //若用枚举解,超时
{
if(y>=y1&&y<=y2)ans++;
x+=getabs(b);
y=(c-a*x)/b;
}*/
if(yy>y){long long temp=y;y=yy;yy=temp;} //大小决定一下
if(yy<y1) //取在区间y1->y2之间的解。(y,yy为边界解)
{
yy=yy+(y1-yy)/getabs(a)*getabs(a);
while(yy<y1)yy+=getabs(a);
}
if(y2<y)
{
y=y-(y-y2)/getabs(a)*getabs(a);
while(y>y2)y-=getabs(a);
}
if(y>=yy)
ans=(y-yy)/getabs(a)+1;
cout<<ans<<endl;
}
SGU 106 在区间范围内的线性方程解个数的更多相关文章
- 扩展欧几里德 SGU 106
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106 题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...
- SGU 106 The equation
H - The equation Time Limit:250MS Memory Limit:4096KB 64bit IO Format:%I64d & %I64u Subm ...
- HDU4622:Reincarnation(后缀数组,求区间内不同子串的个数)
Problem Description Now you are back,and have a task to do: Given you a string s consist of lower-ca ...
- echarts renderItem-在区间段内展示连续数据
一.需求背景: 贴图说明:要求数据在不同类型的区间段内展示. 二.实现思路及代码 实现方法: 利用echarts的自定义配置:option.series[i].type='custom'中的rende ...
- 区间求小于等于k的数字个数 hdu4177
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4417 题目意思给出一个序列,叫我们求一个区间里面小于等于k的数字个数. 这里面我用分块和主席树两种方法 ...
- hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙
/** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...
- 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)
Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...
- “全栈2019”Java第一百零一章:局部内部类覆盖作用域内成员详解
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...
- HDU 4417.Super Mario-可持久化线段树(无修改区间小于等于H的数的个数)
Super Mario Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
随机推荐
- 快学UiAutomator创建第一个实例
工具准备 一.准备好java环境(JDK)和安卓环境(SDK.ADT)jdk1.6+ \eclipse\SDK \ADT详情百度,安装java环境 二.打开eclipse 三.创建步骤: 右键新建== ...
- Python基础篇 -- 部分练习题
实现一个整数加法计算器(两个数相加): 如:content = input("请输入内容:") 用户输入:5+9或5+ 9或5 + 9(含空白),然后进行分割转换最终进行整数的计算 ...
- C语言格式化说明符
1.1.1 格式化输入输出函数一.printf()函数printf()函数是格式化输出函数, 一般用于向标准输出设备按规定格式输出信息.在编写程序时经常会用到此函数.printf()函数的调用格式为: ...
- Python学习笔记2(序列)
元组不可变序列 tuple函数 总结 字符串 基本字符串的操作 字符串格式化 字符串方法 find join lower replace split strip translate 小结 元组:不可变 ...
- Python自动化测试框架——数据驱动(从文件中读取)
学过编程的伙伴们都知道,数据不仅可以从代码中读取,还可以从文件中读取. 今天小编就简要的介绍一下从文件中读取数据,并应用到自动化测试中方法. 先来展示下接下来将要用到的文件在项目中的结构 从txt文件 ...
- 前端 MV*模式
https://github.com/livoras/blog/issues/11 MVC 调用关系如下: Controller(model) ,controller中执行业务逻辑,操作model V ...
- perl学习之正则表达式
9 Perl 中的正则表达式 正则表达式的三种形式 正则表达式中的常用模式 正则表达式的 8 大原则 正则表达式是 Perl 语言的一大特色,也是 Perl 程序中的一点难点,不过如果大家能够很 ...
- 杭电 5773 The All-purpose Zero
Description ?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000). ...
- c#中的String方法
1.Replace(替换字符):public string Replace(char oldChar,char newChar);在对象中寻找oldChar,如果寻找到,就用newChar将oldCh ...
- Oracle从入门到精通(笔记)
一.Oracle11g概述 1.6 启动与关闭数据库实例 1.6.1 启动数据库实例 Oracle数据库实例启动分3个步骤:启动实例,加载数据库,打开数据库: 命令格式:startup [nomoun ...