Spark中RDD的常用操作(Python)
弹性分布式数据集(RDD)
Spark是以RDD概念为中心运行的。RDD是一个容错的、可以被并行操作的元素集合。创建一个RDD有两个方法:在你的驱动程序中并行化一个已经存在的集合;从外部存储系统中引用一个数据集。RDD的一大特性是分布式存储,分布式存储在最大的好处是可以让数据在不同工作节点并行存储,以便在需要数据时并行运算。弹性指其在节点存储时,既可以使用内存,也可已使用外存,为使用者进行大数据处理提供方便。除此之外,RDD的另一大特性是延迟计算,即一个完整的RDD运行任务被分为两部分:Transformation和Action
1.Transformation
Transformation用于对RDD的创建,RDD只能使用Transformation创建,同时还提供大量操作方法,包括map,filter,groupBy,join等,RDD利用这些操作生成新的RDD,但是需要注意,无论多少次Transformation,在RDD中真正数据计算Action之前都不可能真正运行。
2.Action
Action是数据执行部分,其通过执行count,reduce,collect等方法真正执行数据的计算部分。实际上,RDD中所有的操作都是Lazy模式进行,运行在编译中不会立即计算最终结果,而是记住所有操作步骤和方法,只有显示的遇到启动命令才执行。这样做的好处在于大部分前期工作在Transformation时已经完成,当Action工作时,只需要利用全部自由完成业务的核心工作。
下面是在python中对RDD的生成,以及一些基本的Transformation,Action操作。
# -*- coding:utf-8 -*-
from pyspark import SparkContext, SparkConf
from pyspark.streaming import StreamingContext
import math
appName ="jhl_spark_1" #你的应用程序名称
master= "local"#设置单机
conf = SparkConf().setAppName(appName).setMaster(master)#配置SparkContext
sc = SparkContext(conf=conf) # parallelize:并行化数据,转化为RDD
data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data, numSlices=10) # numSlices为分块数目,根据集群数进行分块 # textFile读取外部数据
rdd = sc.textFile("./c2.txt") # 以行为单位读取外部文件,并转化为RDD
print rdd.collect() # map:迭代,对数据集中数据进行单独操作
def my_add(l):
return (l,l)
data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data) # 并行化数据集
result = distData.map(my_add)
print (result.collect()) # 返回一个分布数据集 # filter:过滤数据
def my_add(l):
result = False
if l > 2:
result = True
return result
data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data)#并行化数据集,分片
result = distData.filter(my_add)
print (result.collect())#返回一个分布数据集 # zip:将两个RDD对应元素组合为元组
x = sc.parallelize(range(0,5))
y = sc.parallelize(range(1000, 1005))
print x.zip(y).collect() #union 组合两个RDD
print x.union(x).collect()
# Aciton操作 # collect:返回RDD中的数据
rdd = sc.parallelize(range(1, 10))
print rdd
print rdd.collect() # collectAsMap:以rdd元素为元组,以元组中一个元素作为索引返回RDD中的数据
m = sc.parallelize([('a', 2), (3, 4)]).collectAsMap()
print m['a']
print m[3] # groupby函数:根据提供的方法为RDD分组:
rdd = sc.parallelize([1, 1, 2, 3, 5, 8])
def fun(i):
return i % 2
result = rdd.groupBy(fun).collect()
print [(x, sorted(y)) for (x, y) in result] # reduce:对数据集进行运算
rdd = sc.parallelize(range(1, 10))
result = rdd.reduce(lambda a, b: a + b)
print result
除上述以外,对RDD还存在一些常见数据操作如:
name()返回rdd的名称
min()返回rdd中的最小值
sum()叠加rdd中所有元素
take(n)取rdd中前n个元素
count()返回rdd的元素个数
更多操作请参考 :http://spark.apache.org/docs/latest/api/python/index.html
Spark中RDD的常用操作(Python)的更多相关文章
- spark中RDD的转化操作和行动操作
本文主要是讲解spark里RDD的基础操作.RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当 ...
- 超详细!盘点Python中字符串的常用操作
在Python中字符串的表达方式有四种 一对单引号 一对双引号 一对三个单引号 一对三个双引号 a = 'abc' b= "abc" c = '''abc''' d = " ...
- 关于Spark中RDD的设计的一些分析
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Dat ...
- Spark 中 RDD的运行机制
1. RDD 的设计与运行原理 Spark 的核心是建立在统一的抽象 RDD 之上,基于 RDD 的转换和行动操作使得 Spark 的各个组件可以无缝进行集成,从而在同一个应用程序中完成大数据计算任务 ...
- [Spark] Pair RDD常见转化操作
本篇博客中的操作都在 ./bin/pyspark 中执行. 对单个 Pair RDD 的转化操作 下面会对 Pair RDD 的一些转化操作进行解释.先假设我们有下面这些RDD(在pyspark中操作 ...
- .NET中DataTable的常用操作
一.目的 在各种.NET开发中,DataTable都是一个非常常见且重要的类型,在与数据打交道的过程中可以说是必不可少的对象. 它功能强大,属性与功能也是相当丰富,用好的话,使我们在处理数据时,减少很 ...
- web自动化测试---测试中其他一些常用操作
一些其他常用操作如下: 1.最大化浏览器窗口 driver.maximize_window() 2.后退 driver.back() 3.前进 driver.forward() 4.刷新操作 driv ...
- python中字符串(str)常用操作总结
# 字符串的常用操作方法 (都是形成新的字符串,与原字符串没有关系.) 1.字符串的基本操作之切片 s = 'python hello word' # 取首不取尾,取尾要+1 # 切片取出来的字符串与 ...
- 关于《Selenium 2自动化测试实战 基于Python语言》学习过程中键盘的常用操作
下边是自己在学习过程中总结的一些常用键盘的操作
随机推荐
- 《DSP using MATLAB》示例Example 8.7
%% ------------------------------------------------------------------------ %% Output Info about thi ...
- pipeline的存储代码
在spider中最后一个函数返回item时会scrapy会调用pipeline里面的 process_item(self, item, spider):函数并传入item,spider等参数在这里可以 ...
- [MEF]第01篇 MEF使用入门
一.演示概述 此演示初步介绍了MEF的基本使用,包括对MEF中的Export.Import和Catalog做了初步的介绍,并通过一个具体的Demo来展示MEF是如何实现高内聚.低耦合和高扩展性的软件架 ...
- parceljs 基本使用———又一个前端构建工具
备注: 又一个新的前端构建工具 1. 安装 yarn global add parcel-bundler 2. 初始化项目 yarn init -y 3. 基本代码 a. 创建 index. ...
- (转)如何制作nodejs,npm “绿色”安装包
摘自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=8625039&id=3817492 由于公司环境 ...
- new String(tmp,1,nlen,"UTF8")
tmp是一个byte(字节)数组,如:['a','b','c'...],tmp[0]是去byte中的第一个,运算符&表示按位运算‘且’,就是前后值的二进制相同位有0取0,否则取1,如:2&am ...
- Ubuntu secuerCRT连接失败,The remote system refused the connection.
新安装的ubuntu系统,securtCRT连接失败,出现下面结果,这是因为ubuntu没有安装工具. The remote system refused the connection. 解决办法: ...
- 常见企业IT支撑【4、gitlab代码管理工具】
安装方式可借鉴http://www.cnblogs.com/juandx/p/5339254.html 安装方式
- dateframe行列插入和删除操作
ar = np.array(list("ABCDEFG")) # array只是Convert,默认会copy源值.asarray也是Convert,如果源值是array则不cop ...
- Linux和Windows的遍历目录下所有文件的方法对比
首先两者读取所有文件的方法都是采用迭代的方式,首先用函数A的返回值判断目录下是否有文件,然后返回值合法则在循环中用函数B直到函数B的返回值不合法为止.最后用函数C释放资源. 1.打开目录 #inclu ...