[LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析
本文原题: LeetCode.
给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数.
什么是二叉搜寻树?
二叉查找树(Binary Search Tree),或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
举个栗子,
给定 n =
3, 共有 5 个.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
本题的解题思路如下:
设n对应的BST个数为h(n), n-1对应的个数为h(n-1)...依此类推.
那么,
- 把1放在根节点, 2...n放在右侧, 总种类是h(1) * h(n-1)
- 把2放在根节点, 1放在左侧, 3...n放在右侧, 总种类是h(2) * h(n-2)
- ....
- 把n放在根节点, 1...n-1放在左侧, 总种类是h(n-1) * h(1)
所以h(n) = h(1) * h(n-1) + h(2) * h(n-2) +...+ h(n-2) * h(2) + h(n-1) * h(1)
上述h(n)表达式即为卡特兰数.(幽兰止水的CSDN博客)
下面是实现的C++代码:
class Solution {
public:
int numTrees(int n) {
if (n < ) return ;
vector<int> h(n+, );
h[] = ; for(int i = ; i <= n; i++)
for (int j = ; j < i; j++)
h[i] += h[j] * h[i-j-]; return h[n];
}
};
对于此代码本人有一个疑惑, 就是为何h(n) = h(0) * h(n-1) +... 而不是h(n) = h(1) * h(n-1) +... 呢?
[LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析的更多相关文章
- LeetCode 669. 修剪二叉搜索树(Trim a Binary Search Tree)
669. 修剪二叉搜索树 669. Trim a Binary Search Tree 题目描述 LeetCode LeetCode669. Trim a Binary Search Tree简单 J ...
- LeetCode 96. 不同的二叉搜索树(Unique Binary Search Trees )
题目描述 给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种? 示例: 输入: 输出: 解释: 给定 n = , 一共有 种不同结构的二叉搜索树: \ / / / \ \ / / ...
- LeetCode 98. 验证二叉搜索树(Validate Binary Search Tree)
题目描述 给定一个二叉树,判断其是否是一个有效的二叉搜索树. 假设一个二叉搜索树具有如下特征: 节点的左子树只包含小于当前节点的数. 节点的右子树只包含大于当前节点的数. 所有左子树和右子树自身必须也 ...
- 浅谈卡特兰数(Catalan number)的原理和相关应用
一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[ ...
- 卡特兰数 catalan number
作者:阿凡卢 出处:http://www.cnblogs.com/luxiaoxun/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留 ...
- 卡特兰数(Catalan Number) 算法、数论 组合~
Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为( ...
- 卡特兰数(Catalan Number) 学习笔记
一.三个简单的问题 1.给定一串长为2n的01序列,其中0和1的数量相等,满足任意前缀中0的个数不少于1的个数,求序列的个数 2.给出一串长为n的序列,按顺序将他们进栈,随意出栈,求最后进出栈的方案 ...
- 【知识总结】卡特兰数 (Catalan Number) 公式的推导
卡特兰数的英文维基讲得非常全面,强烈建议阅读! Catalan number - Wikipedia (本文中图片也来源于这个页面) 由于本人太菜,这里只选取其中两个公式进行总结. (似乎就是这两个比 ...
- Leetcode 95. Unique Binary Search Tree II
由于BST的性质,所以右子树或者左子树中Node的值是连续的: 左子树 = [1, i -1], root = i, 右子树 = [i + 1, n].使用一个递归函数构造这个BST.其中返回值应该是 ...
随机推荐
- nyoj1015——二分图染色
二部图 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描述 二部图又叫二分图,我们不是求它的二分图最大匹配,也不是完美匹配,也不是多重匹配,而是证明一个图是不是二部图.证 ...
- IOS UI-自定义UIColectionView布局
ViewController.m // // ViewController.m // IOS_0226_自定义UIColectionView布局 // // Created by ma c on 16 ...
- Ansible 小手册系列 三(命令介绍)
仅仅只是介绍,可以选择跳过 ansible ansible是指令核心部分,其主要用于执行ad-hoc命令,即单条命令.默认后面需要跟主机和选项部分,默认不指定模块时,使用的是command模块. Us ...
- 淘宝TDDL配置以及使用
此章节具体介绍一下淘宝TDDL具体配置和使用 1. Spring配置文件配置:================spring-mybatis.xml 中配置============= <bean ...
- Java静态绑定和动态绑定
程序绑定的概念: 绑定指的是一个方法的调用与方法所在的类(方法主体)关联起来.对java来说,绑定分为静态绑定和动态绑定:或者叫做前期绑定和后期绑定 静态绑定(早绑定 编译器绑定): 在程序执行前方法 ...
- c# DataTable导出为excel
/// <summary> /// 将DataTable导出为Excel文件(.xls) /// </summary> /// <param name="dt& ...
- 配置mysql 允许远程连接
今天折腾了好常时间远程连接mysql ,在云服务器里面打开了3306端口,使用了service mysql status查看到mysql进程正常. netstat -anp | grep mysql ...
- Return type declarations返回类型声明
PHP 7.新增了返回类型声明 http://php.net/manual/en/functions.returning-values.php 在PHP 7.1中新增了返回类型声明为void,以及类型 ...
- Java 7 新特性try-with-resources语句
1.什么是try-with-resources语句 try-with-resources 语句是一个声明一个或多个资源的 try 语句.一个资源作为一个对象,必须在程序结束之后随之关闭. try-wi ...
- 特殊的 html 空格
http://www.zhangxinxu.com/wordpress/2015/01/tips-blank-character-chinese-align/