TF Boys (TensorFlow Boys ) 养成记(一):TensorFlow 基本操作
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装。关于配置TensorFlow,官方已经说得很详细了,我这里就不啰嗦了。官方教程看这里:https://www.tensorflow.org/get_started/os_setup
如果安装了GPU版本的TensorFlow,还需要配置Cuda,关于Cuda安装看这里:https://www.tensorflow.org/get_started/os_setup#optional-install-cuda-gpus-on-linux
我们还需要一个Python编译器,这里我们使用Anaconda,Anaconda2对应Python2,Anaconda3对应Python3,我使用Anaconda2。Anaconda自带了一些常用的Python包,以及一些比较好用的Python编译器。
配置好TensorFlow以后,打开Anaconda的Spyder,输入以下代码检查TensorFlow是否可用。
import tensorflow as tf
hello = tf.constant('Hello TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
a = tf.constant(10)
b = tf.constant(32)
print(sess.run(a + b))
如果遇到任何报错,请参考:https://www.tensorflow.org/get_started/os_setup#common_problems
使用TensorFlow之前,要了解一下TensorFlow的基本知识:
1. 使用图(graphs)来表示计算;
2.在会话(Session)中执行图;
3.使用张量(tensors)来代表数据;
4.通过变量(variables)来维护状态;
5.使用供给(feeds)和取回(fetches)来传入或者传出数据。
关于详细的基础使用,请参考:https://www.tensorflow.org/get_started/basic_usage, 太长不看的,至少看下代码以及代码的注释。
了解了这些基本用法以后,活动一下筋骨,来编个小程序测试一下我们学习的结果吧,目标是优化一个一次函数y = wx + b的权值w和偏置b,使得w和b接近给定的表达式y = 0.1*x + b,代码如下:
import tensorflow as tf
import numpy as np
import os
os.environ['CUDA_VISIBLE_DEVICES']=''
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction=0.2
sess = tf.InteractiveSession(config=config) x_data = np.random.rand(100).astype("float32")
y_data = x_data * 0.1 + 0.3 W = tf.Variable(tf.random_uniform([1],-1.0,1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess.run(init)
for step in xrange(201):
sess.run(train)
if step % 20 ==0:
print(step, sess.run(W), sess.run(b))
代码运行结果如下:

可以看到经过200次迭代,权重w已经接近预设值0.1,b 接近预设值0.3,实际上80次的时候已经收敛到很好的结果了。
接下来,我们进行下一步的工作,用神经网络来进行MNIST手写数字的识别,MNIST手写数字分 training 和 test 两个大类,training 有6万张28*28大小的手写数字,test有1万张28*28大小的数字,更具体的介绍看这里:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges。
MNIST手写数字识别在TensorFlow的example中有自带的代码来实现,官方文档也给出了很好的解释,https://www.tensorflow.org/tutorials/mnist/beginners/和https://www.tensorflow.org/tutorials/mnist/pros/这两个,建议都看,加强自己对TensorFlow的理解。
至此,TensorFlow已经有了基本的入门知识,然鹅,还是不足以支撑我膨胀的野心,我是要成为加勒比海盗一样的男人,我是要成为TF Boys一样的男人(背景声音:噫~~),这种基本知识怎么能满足得了我这么优秀的头脑。
接下来,我们来看TensorFlow Mechanics 101,说实话,我也不知道这个名字是什么意思,反正是个教程,管他呢,先学会再说。这里面看起来也不难啊,就是介绍了examples/tutorials/mnist/mnist.py 和 examples/tutorials/mnist/fully_connected_feed.py两个函数,顺便说一下,用pip安装之后的TensorFlow目录一般在:/usr/local/lib/python2.7/dist-packages/tensorflow/或者是/usr/lib/python2.7/dist-packages/tensorflow/这里。细看这两个文件的代码,不是很难,如果前面的知识认真看了,这个可以直接看代码而不看官方文档,实在不明白的地方可以看官方文档的解释。
在看代码的过程中,有不明白的函数,就去Python API这里找相应的函数来看,https://www.tensorflow.org/api_docs/python/,找不到的话,可以点右上角的搜索来搜索该函数。
先写到这里,明天更新TensorFlow的How To。
参考文献:
1. https://www.tensorflow.org/tutorials/
TF Boys (TensorFlow Boys ) 养成记(一):TensorFlow 基本操作的更多相关文章
- TF Boys (TensorFlow Boys ) 养成记(一)
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...
- TF Boys (TensorFlow Boys ) 养成记(五)
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...
- TF Boys (TensorFlow Boys ) 养成记(五): CIFAR10 Model 和 TensorFlow 的四种交叉熵介绍
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...
- TensorFlow.org教程笔记(一)Tensorflow初上手
本文同时也发布在自建博客地址. 本文翻译自www.tensorflow.org的英文教程. 本文档介绍了TensorFlow编程环境,并向您展示了如何使用Tensorflow解决鸢尾花分类问题. 先决 ...
- Tensorflow教程(1)Tensorflow的下载和安装
人工智能已经成为了目前的大趋势,作为程序员的我们也应该跟着时代进步.Tensorflow作为人工智能领域的重要工具,被广泛的使用在机器学习的应用当中. Tensorflow使用人数众多.社区完善,所以 ...
- [翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems"
[翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed ...
- 学习tensorflow之mac上安装tensorflow
背景 听说谷歌的第二代机器学习的框架tensorflow开源了,我也心血来潮去探探大牛的产品.怎奈安装就折腾了一天,现在整理出来备忘. tensorflow官方网站给出的安装步骤很简单: # Only ...
- Tensorflow从入门到精通之——Tensorflow基本操作
前边的章节介绍了什么是Tensorflow,本节将带大家真正走进Tensorflow的世界,学习Tensorflow一些基本的操作及使用方法.同时也欢迎大家关注我们的网站和系列教程:http://ww ...
- 深度学习之 TensorFlow(二):TensorFlow 基础知识
1.TensorFlow 系统架构: 分为设备层和网络层.数据操作层.图计算层.API 层.应用层.其中设备层和网络层.数据操作层.图计算层是 TensorFlow 的核心层. 2.TensorFlo ...
随机推荐
- Java程序员之Spring(一) 入门
一. Spring 原理讲解 Spring 是一个轻量容器框架(开源):Spring的核心是 IoC(控制反转) 和 AOP(面向切面编程): Spring 由7个模块组成: Spring Core ...
- webView放弃capture()截图的替代方法
float scale = webView.getScale(); height = (int) (webView.getContentHeight() * scale + 0.5); bitmap ...
- CentOS6.4的NIS+NFS配置流程
NIS和NFS的架设请看我其他的专题日志,这边主要描述两者结合的命令流程 1.NFS上配置专门给NIS用户共享目录 /nishome/ 192.168.188.0/24(rw,sync,no_root ...
- hsqldb简单使用总结
hsqldb数据库是一款纯Java实现的开源免费数据库,相对其他数据库来说,体积非常小,使用方便,非常利于在测试环境中使用,无需复杂的数据库配置. hsqldb数据库引擎有几种服务器模式:Se ...
- 11g的新特性:SQL Plan Management(SPM)
Oracle11g中,Oracle提供dbms_spm包来管理SQL Plan,SPM是一个预防机制,它记录并评估sql的执行计划,将已知的高效的sql执行计划建立为SQL Plan Baseline ...
- kali2.0安装及使用笔记(附带vim配置,长期更新)
作者:陈栋权 时间:16/08/19 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明, 且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利. 如有特别用途,请与我联系邮 ...
- select to object 查询方法
(1)Select() (2)Where() (3)OrderBy()
- SuggestFrameWork js代码结构
关于suggestFrameWork的使用教程网上很多,如果您仅仅想知道如何使用请移步.这里展现一下js代码实现结构 下载地址 http://sourceforge.net/projects/sugg ...
- 搞点事情,使用node搭建反向代理
导语 最近有个需求,需要对业务管理后台的操作记录进行上报.一般这种上报需求都是又后台同学来做比较合适的.但是因为后台人力的原因.这个工作落到了我这个小前端的头上.这里记录下做这个需求踩的一些坑. 一. ...
- sql之分段统计
sql之分段统计 需求:获取一个县所有家庭人数在1-2人,3-4人,5-6人,6人以上的家庭数的数组 思路:通过CASE WHEN 将 CBFCYSL分组,然后统计数据条数. 语句: SELECT T ...