【BZOJ4818】[Sdoi2017]序列计数

Description

Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数。Alice还希望
,这n个数中,至少有一个数是质数。Alice想知道,有多少个序列满足她的要求。

Input

一行三个数,n,m,p。
1<=n<=10^9,1<=m<=2×10^7,1<=p<=100

Output

一行一个数,满足Alice的要求的序列数量,答案对20170408取模。

Sample Input

3 5 3

Sample Output

33

题解:至少包含1个质数的数量=总数-不包含质数的数量 (这种补集法不是一次两次见到了吧?)

于是我们考虑用DP求解,先快筛出1..m内的质数,1..m内除以P模为j的数的个数,1..m内除以P模为j的合数的个数

然后设f[i][j]表示i个数,总和除以P模j的方案数,g[i][j]表示i个合数,总和除以P模j的方案数,容易得出

f[i+1][(j+k)%P]+=f[i][j]+1..m内除以P模为j的数的个数
g[i+1][(j+k)%P]+=g[i][j]+1..m内除以P模为j的合数的个数

发现时间复杂度O(np),用矩乘快速幂优化一下就好啦

#include <cstdio>
#include <cstring>
#include <iostream>
#define mod 20170408
using namespace std;
typedef long long ll;
int np[20000010],cnt[110],sum[110],pri[10000010];
int n,m,p,tot;
typedef struct matrix
{
ll v[110][110];
}M;
M x,ans,emp;
ll ans1;
M mmul(M a,M b)
{
M c=emp;
int i,j,k;
for(i=0;i<p;i++)
for(j=0;j<p;j++)
for(k=0;k<p;k++)
c.v[i][j]=(c.v[i][j]+a.v[i][k]*b.v[k][j])%mod;
return c;
}
void pm(int y)
{
while(y)
{
if(y&1) ans=mmul(ans,x);
x=mmul(x,x),y>>=1;
}
}
int main()
{
scanf("%d%d%d",&n,&m,&p);
int i,j;
np[1]=cnt[1]=sum[1]=1;
for(i=2;i<=m;i++)
{
sum[i%p]=(sum[i%p]+1)%mod;
if(!np[i]) pri[++tot]=i;
else cnt[i%p]=(cnt[i%p]+1)%mod;
for(j=1;j<=tot&&i*pri[j]<=m;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
for(i=0;i<p;i++)
for(j=0;j<p;j++)
x.v[i][(i+j)%p]=(x.v[i][(i+j)%p]+sum[j])%mod;
ans.v[0][0]=1;
pm(n);
ans1=ans.v[0][0];
memset(ans.v,0,sizeof(ans.v)),memset(x.v,0,sizeof(x.v));
ans.v[0][0]=1;
for(i=0;i<p;i++)
for(j=0;j<p;j++)
x.v[i][(i+j)%p]=(x.v[i][(i+j)%p]+cnt[j])%mod;
pm(n);
printf("%lld",(ans1-ans.v[0][0]+mod)%mod);
return 0;
}

【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法的更多相关文章

  1. [bzoj4818][Sdoi2017]序列计数_矩阵乘法_欧拉筛

    [Sdoi2017]序列计数 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=4818. 题解: 首先列出来一个递推式子 $f[i][0]$ ...

  2. BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法

    BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...

  3. 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 359 Description Al ...

  4. 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)

    传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...

  5. loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)

    题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i ...

  6. BZOJ4818 [SDOI2017] 序列计数 【矩阵快速幂】

    题目分析: 一个很显然的同类项合并.注意到p的大小最大为100,考虑把模p意义下相同的求出来最后所有的减去没有质数的做矩阵快速幂即可. 代码: #include<bits/stdc++.h> ...

  7. BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*

    BZOJ4818 LOJ2002 SDOI2017 序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希 ...

  8. [BZOJ4818][SDOI2017]序列计数(动规+快速幂)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 972  Solved: 581[Submit][Status ...

  9. [Bzoj4818]序列计数(矩阵乘法+DP)

    Description 题目链接 Solution 容斥原理,答案为忽略质数限制的方案数减去不含质数的方案数 然后矩阵乘法优化一下DP即可 Code #include <cstdio> # ...

随机推荐

  1. unity3D中使用Socket进行数据通信(二)

    上一篇博客主要介绍了使用socket搭建服务端和client程序,这一篇来说说socket的数据传输,我们使用socket的目的是解决点对点之间的数据传输,之前提到了socket中一个重要的概念:po ...

  2. RFID编码

    信号编码系统包括信源编码和信道编码两大类,器作用是把要传输的信息尽可能的与传输信道相匹配,并提供对信息的某种保护以防止信息受到干扰.信源编码与信源译码的目的是提高信息传输的有效性以及完成模数转换等:信 ...

  3. Python 爬虫 去掉网页注释,去掉网页注释

    在爬虫中,我们遇到了网页注释的问题,这些内容,第一,耗费内存资源,第二,在解析网页的时候,不易匹配出来信息.那么我们该如何去掉他们呢??? 我们可以去使用正则去过滤掉他们 方法如下 result = ...

  4. php回调函数原理和实例

    原理 自己调用自己 称之为“递归”,而不是回调 你也知道回调的关键是这个回既然是回,那么就有一个谁是主体的问题,因为回调是往回调用的意思我调用了函数A,而函数A在执行过程中调用了我提供的函数B,这个函 ...

  5. AppModify修改app.config

    public class AppModify { /// <summary> /// 依据连接串名字connectionName返回数据连接字符串 /// </summary> ...

  6. poj1936

    非连续子串匹配题,直接模拟 /** \brief poj 1936 * * \param date 2014/8/5 * \param state AC * \return memory 804k t ...

  7. Xcode常见问题

    今天真机测试的时候,突然出现了这个错误:  not have an architecture that “Administrator”的 iPhone (3) can execute. 原因是我刚刚修 ...

  8. 容易造成JavaScript内存泄露几个方面

    高效的JavaScript Web应用必须流畅,快速.与用户交互的任何应用程序,都需要考虑如何确保内存有效使用,因为如果消耗过多,页面就会崩溃,迫使用户重新加载.而你只能躲在角落哭泣. 自动垃圾收集是 ...

  9. Android WebView的注意事项

    1.修改权限,添加<uses-permission android:name="android.permission.INTERNET"/> 2.loadUrl方法要写 ...

  10. Ubuntu 下添加OpenERP command 快捷启动方式

    编辑home目录下的.bashrc文件 alias xjerp="~/odoo/xj/openerp-server -r openerp --addons-path='~/odoo/xj/o ...