Piggy-Bank

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d
& %I64u

Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has
any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay
everything that needs to be paid. 



But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility
is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs! 

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights
are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are
exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams. 

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight
cannot be reached exactly, print a line "This is impossible.". 

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
////DP最关键的就是状态,在DP时用到的数组时,
////也就是存储的每个状态的最优值,也就是记忆化搜索
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[1000005];
int main()
{
int t;
int wa,wb,w;
int n,val[505],wei[505],i,j;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&wa,&wb);
w = wb-wa;//必须减去小猪本身重量
scanf("%d",&n);
for(i = 0; i<n; i++)
scanf("%d%d",&val[i],&wei[i]);
for(i = 0; i<=w; i++)
{
dp[i]=10000000;//因为要求小的,所以dp数组必须存大数
}
dp[0] = 0;
for(i = 0; i<n; i++)
{
for(j=wei[i]; j<=w; j++)//按顺序而不是逆序,这是和01背包的区别,表示的是当前的状态
{
dp[j] = min(dp[j],dp[j-wei[i]]+val[i]);
}
}
if(dp[w] == 10000000)
printf("This is impossible.\n");
else
printf("The minimum amount of money in the piggy-bank is %d.\n",dp[w]);
}
return 0;
}

hdu 1114 dp动规 Piggy-Bank的更多相关文章

  1. 关于DP动规

    今天学了动规,简单记录一下自己理解了的:(要不俺就忘了) 首先,啥是DP??? 动态规划,其实就是组合子问题的解来解决整个问题的解,由于每个子问题他只判断一次,所以不会重复计算,那就很牛啊!!! 专业 ...

  2. HDU 1260 Tickets (动规)

    Tickets Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  3. dp 动规 最佳加法表达式

    最佳加法表达式 有一个由1..9组成的数字串.问如果将m个加号插入到这个数字串中,在各种可能形成的表达式中,值最小的那个表达式的值是多少 解题思路 假定数字串长度是n,添完加号后,表达式的最后一个加号 ...

  4. 经典DP动规 0-1背包问题 二维与一维

    先上代码 b站讲解视频 灯神讲背包 #include <iostream> #include <cstring> #include <algorithm> usin ...

  5. 怒刷DP之 HDU 1114

    Piggy-Bank Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit S ...

  6. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  7. HDU 1159 Common Subsequence (动规+最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  8. Piggy-Bank(HDU 1114)背包的一些基本变形

    Piggy-Bank  HDU 1114 初始化的细节问题: 因为要求恰好装满!! 所以初始化要注意: 初始化时除了F[0]为0,其它F[1..V]均设为−∞. 又这个题目是求最小价值: 则就是初始化 ...

  9. NOIP2013 提高组day2 2 花匠 动规 找拐点 树状数组

    花匠 描述 花匠栋栋种了一排花,每株花都有自己的高度.花儿越长越大,也越来越挤.栋栋决定把这排中的一部分花移走,将剩下的留在原地,使得剩下的花能有空间长大,同时,栋栋希望剩下的花排列得比较别致. 具体 ...

随机推荐

  1. Redhat安装配置VNC服务器

    1. 检查安装VNC服务器 # rpm -qa|grep vnc 如果返回信息中有tigervnc-server,说明已安装了VNC:如果没有: # yum install tigervnc # yu ...

  2. python学习笔记(十三)之lambda表达式

    lambda表达式: 用法 lambda x : 2 * x + 1 其中:前面是参数,后面是返回值. >>> def ds(x): ... return 2 * x + 1 ... ...

  3. Django之ModelForm(二)-----ModelForm组件

    a.  class Meta:             model,                           # 对应Model的             fields=None,     ...

  4. jQuery实现简单前端搜索功能

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. python基础之常用的高阶函数

    前言 高阶函数指的是能接收函数作为参数的函数或类:python中有一些内置的高阶函数,在某些场合使用可以提高代码的效率. map() map函数可以把一个迭代对象转换成另一个可迭代对象,不过在pyth ...

  6. 数学中的Sin和Cos是什么意思?(转)

    数学中的Sin和Cos是什么意思? 作者:admin 分类:生活随笔 发表于 2012年03月21日 16:48 问:数学中的Sin和Cos是什么意思? 答:sin, cos, tan 都是三角函数, ...

  7. 在delphi原有控件基础上画图

    var C:TControlCanvas; begin C := TControlCanvas.Create; C.Pen.Color := clRed; C.Pen.Width := ; C.Con ...

  8. 三十分钟理解计算图上的微积分:Backpropagation,反向微分

    神经网络的训练算法,目前基本上是以Backpropagation (BP) 反向传播为主(加上一些变化),NN的训练是在1986年被提出,但实际上,BP 已经在不同领域中被重复发明了数十次了(参见 G ...

  9. Spring MVC数据绑定(二)

    之前学习了SpringMVC数据绑定的基本知识和简单数据绑定以及POJO类型数据的绑定.接下来总结剩下的一些数据类型的绑定 1. 绑定包装POJO 所谓的包装POJO,就是在一个POJO中包含另一个简 ...

  10. git rebase 过程中遇到冲突该怎么解决?

    在执行git rebase 过程中经常遇到问题,此时有点慌,一般如何解决呢? 1.先将本地的冲突手动解决 2.执行下面命令 git add . git rebase --contine  //继续re ...