Norma

Time Limit: 20 Sec  Memory Limit: 64 MB
[Submit][Status][Discuss]

Description

  

Input

  第1行,一个整数N;

  第2~n+1行,每行一个整数表示序列a。

Output

  输出答案对10^9取模后的结果。

Sample Input

  4
  2
  4
  1
  4

Sample Output

  109

HINT

  N <= 500000
  1 <= a_i <= 10^8

Solution

 \begin {align}
&基本思路,考虑分治,统计对于左端点在[L,mid],右端点在[mid+1,R]的区间贡献:\\
\\
&枚举在[L, mid]中的点i,[mid+1,R]中的点a、b,\\
&保证min[i,mid]≤min[mid+1,a]\\
&并且max[i,mid]≥max[mid+1,b] \\
&然后[mid+1,R]就被分成了三部分:[mid+1,a],[a+1,b],[b+1,R],(假设a<b),\\
\\
&我们考虑分别对三个部分计算贡献:(max=max[i,mid], min=min[i,mid])\\
&①.[mid+1,a]:Ans=max*min*\sum_{j=mid+1}^{a}(j-i+1) \\
&②.[a+1,b]:Ans=max*\sum_{j=a+1}^{b}(min[a+1,j]*(j-i+1)) \\
&③.[b+1,R]:Ans=\sum_{j=b+1}^{R}( max[b+1,j]*min[b+1,j]*(j-i+1)) \\
\\
&这时候,显然①可求了。我们继续推导(把(j-i+1)拆开),显然有:\\
&②=max*\sum_{j=a+1}^{b}min[a+1,j]*j-max*\sum_{j=a+1}^{b}min[a+1,j]*(i-1)\\
&③=\sum_{j=b+1}^{R}max[b+1,j]*min[b+1,j]*j-\sum_{j=b+1}^{R}max[b+1,j]*min[b+1,j]*(i-1)\\
\\
&显然此时②中的\sum_{j=a+1}^{b}min[a+1,j]*j、\sum_{j=a+1}^{b}min[a+1,j]是可以O(len)预处理的,\\
&③中的\sum_{j=b+1}^{R}max[b+1,j]*min[b+1,j]*j、\sum_{j=b+1}^{R}max[b+1,j]*min[b+1,j]也可以O(len)预处理。\\
\\
&显然,若b<a类似。所以我们分治一下即可。\\
\\
&\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:——BearChild \end {align}

BZOJ3745.md

  

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9;
const int INF = ; int get()
{
int res = , Q = ; char c;
while( (c = getchar()) < || c > )
if(c == '-') Q = -;
if(Q) res = c - ;
while( (c = getchar()) >= && c <= )
res = res * + c - ;
return res * Q;
} int n;
int val[ONE];
int Ans; void Modit(int &a)
{
if(a < ) a += MOD;
if(a >= MOD) a -= MOD;
} struct power
{
int Min, MinI;
int Max, MaxI;
int MinMax, MinMaxI; friend power operator -(power a, power b)
{
power c;
Modit(c.Min = a.Min - b.Min),
Modit(c.MinI = a.MinI - b.MinI),
Modit(c.Max = a.Max - b.Max),
Modit(c.MaxI = a.MaxI - b.MaxI),
Modit(c.MinMax = a.MinMax - b.MinMax),
Modit(c.MinMaxI = a.MinMaxI - b.MinMaxI);
return c;
}
}A[ONE]; int Sum(int a, int b)
{
return (s64)(a + b) * (b - a + ) / % MOD;
} void Solve(int L, int R)
{
if(L == R)
{
Modit(Ans += (s64)val[L] * val[R] % MOD * );
return;
} int mid = L + R >> ; int minn = INF, maxx = -INF;
A[mid] = (power){, , , , , }; for(int j = mid + ; j <= R; j++)
{
minn = min(minn, val[j]), maxx = max(maxx, val[j]),
Modit(A[j].Min = A[j - ].Min + minn),
Modit(A[j].MinI = A[j - ].MinI + (s64)minn * j % MOD),
Modit(A[j].Max = A[j - ].Max + maxx),
Modit(A[j].MaxI = A[j - ].MaxI + (s64)maxx * j % MOD),
Modit(A[j].MinMax = A[j - ].MinMax + (s64)minn * maxx % MOD),
Modit(A[j].MinMaxI = A[j - ].MinMaxI + (s64)minn * maxx % MOD * j % MOD);
} minn = INF, maxx = -INF;
int a = mid, b = mid;
power del; for(int i = mid; i >= L; i--)
{
minn = min(minn, val[i]), maxx = max(maxx, val[i]);
while(minn <= val[a + ] && a + <= R) a++;
while(maxx >= val[b + ] && b + <= R) b++;
if(a <= b)
{
Modit(Ans += (s64)maxx * minn % MOD * Sum(mid + - i + , a - i + ) % MOD);
del = A[b] - A[a];
Modit(Ans += (s64)maxx * del.MinI % MOD - (s64)maxx * del.Min % MOD * (i - ) % MOD);
del = A[R] - A[b];
Modit(Ans += (s64)del.MinMaxI - (s64)del.MinMax * (i - ) % MOD);
}
else
{
Modit(Ans += (s64)maxx * minn % MOD * Sum(mid + - i + , b - i + ) % MOD);
del = A[a] - A[b];
Modit(Ans += (s64)minn * del.MaxI % MOD - (s64)minn * del.Max % MOD * (i - ) % MOD);
del = A[R] - A[a];
Modit(Ans += (s64)del.MinMaxI - (s64)del.MinMax * (i - ) % MOD);
}
} Solve(L, mid), Solve(mid + , R); } int main()
{
n = get();
for(int i = ; i <= n; i++)
val[i] = get();
Solve(, n);
printf("%d", Ans);
}

  

【BZOJ3745】Norma [分治]的更多相关文章

  1. [BZOJ3745][COCI2015]Norma[分治]

    题意 题目链接 分析 考虑分治,记当前分治区间为 \(l,r\) . 枚举左端点,然后发现右端点无非三种情况: 极大极小值都在左边; 有一个在左边; 极大极小值都在右边; 考虑递推 \(l\) 的同时 ...

  2. bzoj3745: [Coci2015]Norma 分治,单调队列

    链接 bzoj 思路 首先\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\sum\limits_{k=i}^{j}max(a_k)\)可以用单调队列求解.参见 ...

  3. BZOJ3745 / SP22343 NORMA2 - Norma 分治,CDQ分治

    要命的题目. 写法:分类讨论进行计算. 枚举过每一个\(mid\)的所有区间.对于左端点\(i∈[l, mid - 1]\),向左推并计算\([l,mid]\)范围内的最大\(/\)最小值. 然后右端 ...

  4. 『Norma 分治』

    Norma Description Input Format 第1行,一个整数N: 第2~n+1行,每行一个整数表示序列a. Output Format 输出答案对10^9取模后的结果. Sample ...

  5. 【CF526F】Pudding Monsters cdq分治

    [CF526F]Pudding Monsters 题意:给你一个排列$p_i$,问你有对少个区间的值域段是连续的. $n\le 3\times 10^5$ 题解:bzoj3745 Norma 的弱化版 ...

  6. PKUSC2018训练日程(4.18~5.30)

    (总计:共66题) 4.18~4.25:19题 4.26~5.2:17题 5.3~5.9: 6题 5.10~5.16: 6题 5.17~5.23: 9题 5.24~5.30: 9题 4.18 [BZO ...

  7. 【BZOJ3745】Norma(CDQ分治)

    [BZOJ3745]Norma(CDQ分治) 题面 BZOJ 洛谷 题解 这种问题直接做不好做,显然需要一定的优化.考虑\(CDQ\)分治. 现在唯一需要考虑的就是跨越当前中间节点的所有区间如何计算答 ...

  8. 【BZOJ3745】[Coci2015]Norma cdq分治

    [BZOJ3745][Coci2015]Norma Description Input 第1行,一个整数N: 第2~n+1行,每行一个整数表示序列a. Output 输出答案对10^9取模后的结果. ...

  9. BZOJ3745 COCI2015Norma(分治)

    完全想不到地,考虑分治. 对区间[l,r],将左端点x由mid不断左移,右边记录最右的p满足max[mid+1,p]<=max[x,mid],q满足min[mid+1,q]>=min[x, ...

随机推荐

  1. XML XPath语法总结

    刚刚遇到一个多重查询xmlDoc.SelectSingleNode("Root/Element[@Name='大气象'][@Age='30']")根据innerText查询xmlD ...

  2. Nodejs学习笔记(二)--- 操作MongoDB数据库

    最近看了一些关于mongodb的文章,然后就想知道nodeJS是怎么连接的所以我就尝试去了解了一波(这个菜鸟驿站这个网站还不错,虽然知识文档不是最新的,但是还是蛮好的: 顺便官网地址是这个哦:http ...

  3. Java compiler level does not match the version of the installed Java project facet. map解决方法

    右键项目"Properties",在弹出的"Properties"窗口左侧,单击"Project Facets",打开"Proje ...

  4. jsonFormater之应用

        html代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> ...

  5. CentOS yum 安装LAMP PHP5.4版本

    CentOS yum 安装LAMP PHP5.4版本 [日期:2015-06-04] 来源:Linux社区  作者:rogerzhanglijie [字体:大 中 小]     Linux系统版本:C ...

  6. 外部JS的阻塞下载

    转载于:http://www.cnblogs.com/mofish/archive/2011/09/29/2195256.html 所有浏览器在下载JS的时候,会阻止一切其他活动,比如其他资源的下载, ...

  7. phpisset()和empty()函数区别

    PHP的isset()函数 一般用来检测变量是否设置 格式:bool isset ( mixed var [, mixed var [, ...]] ) 功能:检测变量是否设置 返回值: 若变量不存在 ...

  8. Fetch POST All in One

    Fetch POST All in One FPAIO "use strict"; /** * * @author xgqfrms * @license MIT * @copyri ...

  9. HDU4059_The Boss on Mars

    数论题. 首先我们知道公式:1^4+2^4+3^4+……+n^4=(n)*(n+1)*(2*n+1)*(3*n*n+3*n-1) /30; 然后我们要把多余的减掉.这里用到的是mobius反演. 总之 ...

  10. BZOJ5072 小A的树(树形dp)

    容易猜到能选择的黑点个数是一个连续区间.那么设f[i][j]为i子树内选j个点形成包含根的连通块,最多有几个黑点,g[i][j]为最少有几个黑点,暴力dp是O(n2)的,求出每个连通块大小对应的黑点数 ...