引入

有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时,如果使用之前requests模块常规操作时,往往达不到我们想要的目的,例如:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import requests
if __name__ == "__main__": #张三人人网个人信息页面的url
url = 'http://www.renren.com/289676607/profile' #伪装UA
headers={
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
}
#发送请求,获取响应对象
response = requests.get(url=url,headers=headers)
#将响应内容写入文件
with open('./renren.html','w',encoding='utf-8') as fp:
fp.write(response.text)

一:  基于requests模块的cookie操作

  - 结果发现, 写入到文件中的数据, 不是张三个人页面的数据, 而是人人网登陆首页面, why?首先我们来回顾下cookie的相关概念及作用:

  -- cookie概念:  当用户通过浏览器首次访问一个域名时, 访问的web服务器会给客户端发送数据,以保持web服务端与客户端之间的状态保存, 这些数据就是cookie

  -- cookie作用:   我们在浏览器中, 经常涉及到数据的交换,比如你登录邮箱,登录一个页面。我们经常会在此时设置30天内记住我,或者自动登录选项。那么它们是怎么记录信息的呢,答案就是今天的主角cookie了,Cookie是由HTTP服务器设置的,保存在浏览器中,但HTTP协议是一种无状态协议,在数据交换完毕后,服务器端和客户端的链接就会关闭,每次交换数据都需要建立新的链接。就像我们去超市买东西,没有积分卡的情况下,我们买完东西之后,超市没有我们的任何消费信息,但我们办了积分卡之后,超市就有了我们的消费信息。cookie就像是积分卡,可以保存积分,商品就是我们的信息,超市的系统就像服务器后台,http协议就是交易的过程。

-- 经过cookie的相关介绍,其实你已经知道了为什么上述案例中爬取到的不是张三个人信息页,而是登录页面。那应该如何抓取到张三的个人信息页呢

思路:

    1.我们需要使用爬虫程序对人人网的登录时的请求进行一次抓取,获取请求中的cookie数据

    2.在使用个人信息页的url进行请求时,该请求需要携带 1 中的cookie,只有携带了cookie后,服务器才可识别这次请求的用户信息,方可响应回指定的用户信息页数据

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import requests
if __name__ == "__main__": #登录请求的url(通过抓包工具获取)
post_url = 'http://www.renren.com/ajaxLogin/login?1=1&uniqueTimestamp=201873958471'
#创建一个session对象,该对象会自动将请求中的cookie进行存储和携带
session = requests.session()
#伪装UA
headers={
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',
}
formdata = {
'email': '',
'icode': '',
'origURL': 'http://www.renren.com/home',
'domain': 'renren.com',
'key_id': '',
'captcha_type': 'web_login',
'password': '7b456e6c3eb6615b2e122a2942ef3845da1f91e3de075179079a3b84952508e4',
'rkey': '44fd96c219c593f3c9612360c80310a3',
'f': 'https%3A%2F%2Fwww.baidu.com%2Flink%3Furl%3Dm7m_NSUp5Ri_ZrK5eNIpn_dMs48UAcvT-N_kmysWgYW%26wd%3D%26eqid%3Dba95daf5000065ce000000035b120219',
}
#使用session发送请求,目的是为了将session保存该次请求中的cookie
session.post(url=post_url,data=formdata,headers=headers) get_url = 'http://www.renren.com/960481378/profile'
#再次使用session进行请求的发送,该次请求中已经携带了cookie
response = session.get(url=get_url,headers=headers)
#设置响应内容的编码格式
response.encoding = 'utf-8'
#将响应内容写入文件
with open('./renren.html','w') as fp:
fp.write(response.text)

二.  基于multiprocessing.dummy 线程池的数据爬取

需求:爬取梨视频的视频信息,并计算其爬取数据的耗时

  • 普通爬取

import requests
import random
from lxml import etree
import re
from fake_useragent import UserAgent
#安装fake-useragent库:pip install fake-useragent
url = 'http://www.pearvideo.com/category_1'
#随机产生UA,如果报错则可以添加如下参数:
#ua = UserAgent(verify_ssl=False,use_cache_server=False).random
#禁用服务器缓存:
#ua = UserAgent(use_cache_server=False)
#不缓存数据:
#ua = UserAgent(cache=False)
#忽略ssl验证:
#ua = UserAgent(verify_ssl=False) ua = UserAgent().random
headers = {
'User-Agent':ua
}
#获取首页页面数据
page_text = requests.get(url=url,headers=headers).text
#对获取的首页页面数据中的相关视频详情链接进行解析
tree = etree.HTML(page_text)
li_list = tree.xpath('//div[@id="listvideoList"]/ul/li')
detail_urls = []
for li in li_list:
detail_url = 'http://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
title = li.xpath('.//div[@class="vervideo-title"]/text()')[0]
detail_urls.append(detail_url)
for url in detail_urls:
page_text = requests.get(url=url,headers=headers).text
vedio_url = re.findall('srcUrl="(.*?)"',page_text,re.S)[0] data = requests.get(url=vedio_url,headers=headers).content
fileName = str(random.randint(1,10000))+'.mp4' #随机生成视频文件名称
with open(fileName,'wb') as fp:
fp.write(data)
print(fileName+' is over')

基于线程池的爬取

import requests
import random
from lxml import etree
import re
from fake_useragent import UserAgent
#安装fake-useragent库:pip install fake-useragent
#导入线程池模块
from multiprocessing.dummy import Pool
#实例化线程池对象
pool = Pool()
url = 'http://www.pearvideo.com/category_1'
#随机产生UA
ua = UserAgent().random
headers = {
'User-Agent':ua
}
#获取首页页面数据
page_text = requests.get(url=url,headers=headers).text
#对获取的首页页面数据中的相关视频详情链接进行解析
tree = etree.HTML(page_text)
li_list = tree.xpath('//div[@id="listvideoList"]/ul/li') detail_urls = []#存储二级页面的url
for li in li_list:
detail_url = 'http://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
title = li.xpath('.//div[@class="vervideo-title"]/text()')[0]
detail_urls.append(detail_url) vedio_urls = []#存储视频的url
for url in detail_urls:
page_text = requests.get(url=url,headers=headers).text
vedio_url = re.findall('srcUrl="(.*?)"',page_text,re.S)[0]
vedio_urls.append(vedio_url)
#使用线程池进行视频数据下载
func_request = lambda link:requests.get(url=link,headers=headers).content
video_data_list = pool.map(func_request,vedio_urls)
#使用线程池进行视频数据保存
func_saveData = lambda data:save(data)
pool.map(func_saveData,video_data_list)
def save(data):
fileName = str(random.randint(1,10000))+'.mp4'
with open(fileName,'wb') as fp:
fp.write(data)
print(fileName+'已存储') pool.close()
pool.join()

requests模块session处理cookie 与基于线程池的数据爬取的更多相关文章

  1. Python网络爬虫之cookie处理、验证码识别、代理ip、基于线程池的数据爬去

    本文概要 session处理cookie proxies参数设置请求代理ip 基于线程池的数据爬取 引入 有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时, ...

  2. 基于CrawlSpider全栈数据爬取

    CrawlSpider就是爬虫类Spider的一个子类 使用流程 创建一个基于CrawlSpider的一个爬虫文件 :scrapy genspider -t crawl spider_name www ...

  3. 爬虫 requests模块的其他用法 抽屉网线程池回调爬取+保存实例,gihub登陆实例

    requests模块的其他用法 #通常我们在发送请求时都需要带上请求头,请求头是将自身伪装成浏览器的关键,常见的有用的请求头如下 Host Referer #大型网站通常都会根据该参数判断请求的来源 ...

  4. scrapy框架基于CrawlSpider的全站数据爬取

    引入 提问:如果想要通过爬虫程序去爬取”糗百“全站数据新闻数据的话,有几种实现方法? 方法一:基于Scrapy框架中的Spider的递归爬取进行实现(Request模块递归回调parse方法). 方法 ...

  5. requests模块处理cookie,代理ip,基于线程池数据爬取

    引入 有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个人主页数据)时,如果使用之前requests模块常规操作时,往往达不到我们想要的目的. 一.基于requests模块 ...

  6. 设计模式:基于线程池的并发Visitor模式

    1.前言 第二篇设计模式的文章我们谈谈Visitor模式. 当然,不是简单的列个的demo,我们以电商网站中的购物车功能为背景,使用线程池实现并发的Visitor模式,并聊聊其中的几个关键点. 一,基 ...

  7. 基于线程池的多线程售票demo2.0(原创)

    继上回基于线程池的多线程售票demo,具体链接: http://www.cnblogs.com/xifenglou/p/8807323.html以上算是单机版的实现,特别使用了redis 实现分布式锁 ...

  8. 基于线程池的多线程售票demo(原创)

    废话不多说,直接就开撸import org.springframework.util.StopWatch;import java.util.concurrent.*;/** * 基于线程池实现的多线程 ...

  9. 基于线程池的多并发Socket程序的实现

    Socket“服务器-客户端”模型的多线程并发实现效果的大体思路是:首先,在Server端建立“链接循环”,每一个链接都开启一个“线程”,使得每一个Client端都能通过已经建立好的线程来同时与Ser ...

随机推荐

  1. iOS开发:UITableView的优化技巧-异步绘制Cell

    最近在微博上看到一个很好的开源项目VVeboTableViewDemo,是关于如何优化UITableView的.加上正好最近也在优化项目中的类似朋友圈功能这块,思考了很多关于UITableView的优 ...

  2. 老男孩Linux运维期中架构

  3. ARM寄存器总结:

    ARM有16个32位的寄存器(r0到r15). r15充当程序寄存器PC,r14(link register)存储子程序的返回地址,r13存储的是堆栈地址. ARM有一个当前程序状态寄存器:CPSR. ...

  4. learn go function callback

    package main // 参考文档: // https://github.com/Unknwon/the-way-to-go_ZH_CN/blob/master/eBook/06.7.md im ...

  5. fedora 26 Mysql

    安装 Fedora用dnf默认安装的使Mariadb,即 [*****@localhost ~]$ sudo dnf install mysql-server ... [*****@localhost ...

  6. SLIP 协议

    SLIP 协议 SLIP 英文原义:Serial Line Internet Protocol 中文释义:串行线路网际协议 注解:该协议是Windows远程访问的一种旧工业标准,主要在Unix远程访问 ...

  7. HDU3833 YY's new problem 卡时间第一题

    Given a permutation P of 1 to N, YY wants to know whether there exists such three elements P[i 1], P ...

  8. Spring配置--Aop配置详情

    首先我们来看一下官方文档所给我们的关于AOP的一些概念性词语的解释: 切面(Aspect):一个关注点的模块化,这个关注点可能会横切多个对象.事务管理是J2EE应用中一个关于横切关注点的很好的例子.在 ...

  9. 零基础学习hadoop到上手工作线路指导初级篇:hive及mapreduce

      此篇是在零基础学习hadoop到上手工作线路指导(初级篇)的基础,一个继续总结.五一假期:在写点内容,也算是总结.上面我们会了基本的编程,我们需要对hadoop有一个更深的理解:hadoop分为h ...

  10. ubuntu中安装iso文件

    [font=微软雅黑]小施今天写一篇教程来教大家如何在Ubuntu中使用虚拟光驱. 在中使用是很简单的.可是很多新手却不会  前提:你所在的用户必须拥有root权限(终端中需要用到root权限).一个 ...