分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里。首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例如,我们要做一个垃圾邮件分类器,则为邮件的特征,而对于y,当它1则为垃圾邮件,取0表示邮件为正常邮件。所以0称之为负类(negative class),1为正类(positive class)

逻辑回归

首先看一个肿瘤是否为恶性肿瘤的分类问题,可能我们一开始想到的是用线性回归的方法来求解,如下图:

我们知道线性回归问题只能预测连续的值,而分类问题,我们预测值只能够是0或者1,所以我们可能会取一个临界点,大于取1,反之取零。上面的hΘ(x)好像能够很好的解决问题。所以如下图

这样还用线性回归模型来求解就显得不合适了,因为它预测的值可以超越[0,1]这个范围。下面我们引入一种新的模型,逻辑回归,它的输出变量范围始终都是在0和1之间。如下:

g(z)被称作logistic function或者sigmoid function,它的图像如下:

从图像可以看出z → ∞时g(z) →1,z → −∞时g(z) →0。所以令x0 = 1, 则θT x = θ0 + ∑nj=1 θjxj.

在进入正题前,我们先来看logistic function的一个很有用的特征。如下

现在回到正题,对于给定的逻辑回归问题,我们怎么去拟合出适合的Θ?

假设:

P (y = 1 | x; θ) = hθ(x)   #  hθ(x)的作用是,对于给定的输入变量,根据选择的参数计算输出变量=1 的可能性( estimated probablity)
P (y = 0 | x; θ) = 1 − hθ(x)

把上面两个式子整合一下得到:p(y | x; θ) = (hθ(x))y (1 − hθ(x))1−y

梯度上升方法

在线性回归中,我们的思路是构建似然函数,然后求最大似然估计,最终我们得出了θ的迭代规则,那么在逻辑回归中,我们方法也是一样,因为最后我们是要求最大似然估计,所以用到的算法是梯度上升。

假设训练样本相互独立,则似然函数表达为:

现在我们对似然函数取对数,如下

现在我们需要做的就是最大化似然估计了,这里我们就需要用梯度上升方法了。所以用向量来表示的话,更新规则如下

注意:因为我们是最大似然估计,所以这里是正好,而不是负号。

下面我们一一个训练样本为例,使用梯度上升规则:

在上面的运算中第二步运用到了我们前面推到的特性g(z) = g(z)(1 − g(z)),所以我们得到更新规则:

我们发现这个更新规则和LMS算法的更新规则一致,但是应注意这是两个完全不同的算法。在这里是关于的非线性函数。

这不仅是巧合,更深层次的原因在广义线性模型GLM中会提到。

在前面最大化ℓ(θ)时我们使用到的是梯度上升,在这里,再介绍一种最大化ℓ(θ)的方法---牛顿法(Newton’s method)

牛顿法(Newton’s method)

给出函数:,我们要找到一个Θ使得f(θ) = 0成立,注意这里的Θ∈R,这时牛顿方法的更新规则如下:

牛顿法的执行过程如下:

通过求我们给出点的导数对应的切线与x轴的交点为迭代一次后的点,一直反复迭代,直到f(θ) = 0(无限逼近)

所以对于求f(θ) = 0,牛顿法是一种,那么,怎么去用牛顿法来解决最大化ℓ(θ)呢?

沿着思路,当ℓ(θ)最大的时候,ℓ′(θ)=0,所以这样得到更新如下:

在逻辑回归中,Θ是一个向量,所以此时的牛顿法可以表达为:

∇θℓ(θ) 表示ℓ(θ)的对θi’s的偏导数,H称为黑塞矩阵(Hessian matrix),是一个n*n的矩阵,n是特征量的个数,

牛顿法的收敛速度比批处理梯度下降要快,它只用迭代很少次就能够很接近最小值,但是n很大的时候,每次迭代求黑塞矩阵和黑塞矩阵的逆代价很大.

最后简单的提一下感知机算法

感知机算法(The perceptron learning algorithm)

将逻辑回归修改一下,现在强制它的输出不是0就是1,则此时的 g就是一个临界函数(threshold function)

hθ(x) = g(θT x)则我们得到更新规则如下:

这就是感知机算法。

分类和逻辑回归(Classification and logistic regression)的更多相关文章

  1. 机器学习算法笔记1_2:分类和逻辑回归(Classification and Logistic regression)

    形式: 採用sigmoid函数: g(z)=11+e−z 其导数为g′(z)=(1−g(z))g(z) 如果: 即: 若有m个样本,则似然函数形式是: 对数形式: 採用梯度上升法求其最大值 求导: 更 ...

  2. 斯坦福CS229机器学习课程笔记 part2:分类和逻辑回归 Classificatiion and logistic regression

    Logistic Regression 逻辑回归 1.模型 逻辑回归解决的是分类问题,并且是二元分类问题(binary classification),y只有0,1两个取值.对于分类问题使用线性回归不 ...

  3. 逻辑回归模型(Logistic Regression)及Python实现

    逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳 ...

  4. 斯坦福机器学习视频笔记 Week3 逻辑回归与正则化 Logistic Regression and Regularization

    我们将讨论逻辑回归. 逻辑回归是一种将数据分类为离散结果的方法. 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件. 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost fun ...

  5. 逻辑回归原理 面试 Logistic Regression

    逻辑回归是假设数据服从独立且服从伯努利分布,多用于二分类场景,应用极大似然估计构造损失函数,并使用梯度下降法对参数进行估计.

  6. 吴恩达深度学习:2.9逻辑回归梯度下降法(Logistic Regression Gradient descent)

    1.回顾logistic回归,下式中a是逻辑回归的输出,y是样本的真值标签值 . (1)现在写出该样本的偏导数流程图.假设这个样本只有两个特征x1和x2, 为了计算z,我们需要输入参数w1.w2和b还 ...

  7. 吴恩达机器学习笔记22-正则化逻辑回归模型(Regularized Logistic Regression)

    针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数

  8. [Machine Learning] 逻辑回归 (Logistic Regression) -分类问题-逻辑回归-正则化

    在之前的问题讨论中,研究的都是连续值,即y的输出是一个连续的值.但是在分类问题中,要预测的值是离散的值,就是预测的结果是否属于某一个类.例如:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈 ...

  9. 李宏毅机器学习笔记3:Classification、Logistic Regression

    李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...

随机推荐

  1. ss-libev 源码解析local篇(4): server_recv_cb之STAGE_STREAM

    继续探索server_recv_cb,我们已经来到了STAGE_STREAM状态.如果在0.05秒的timer来之前客户端就有数据过来,server_recv_cb被调用,此时已经在stream状态就 ...

  2. Linux shell multifile content replace with sed

    #!/bin/bash # Linux shell multifile content replace with sed # 声明: # 本源代码主要是利用两份(中.英文)具有相同键值对的json数据 ...

  3. 【剑指offer】10A--求裴波那切数列的第n项,C++实现

    #本文是牛客网<剑指offer>刷题笔记 1.题目 写入一个函数,输入n,输出裴波那切数列的第n项 2.思路 递归--时间和空间复杂度高 循环--时间和空间复杂度低,通过循环迭代计算第n项 ...

  4. 程序设计入门-C语言基础知识-翁恺-第二周:简单的计算程序-详细笔记(二)

    目录 第二周:判断 2.1 比较 2.2 判断 2.3 课后习题 第二周:判断 2.1 比较 简单的判断语句: if(条件成立){ //执行代码 } 条件 计算两个值之间的关系,所以叫做关系运算 关系 ...

  5. Redis缓存的设计、性能、应用与数据集群同步

    Redis缓存的设计.性能.应用与数据集群同步 http://youzhixueyuan.com/design-performance-and-application-of-redis-cache.h ...

  6. LeetCode Permutation in String

    原题链接在这里:https://leetcode.com/problems/permutation-in-string/description/ 题目: Given two strings s1 an ...

  7. {Reship}{Emgu}{vs2010}C#配置Emgu

    =============================================================================================This Ar ...

  8. sql server2008升级

    安装了试用版的sql server2008,要升级为正式企业版.仅仅须要使用安装程序的 维护-升级 功能.在升级时输入企业版序列号,就能升级为正式版.以下给两个序列号 开发版: PTTFM-X467G ...

  9. CDN初学搭建(ats)

    CDN初学搭建(ats) ats trafficserver squid 一. CDN初学搭建 准备vagrant virtualbox 内部环境测试所需包 一.vagrant创建启动虚拟机 1 mk ...

  10. MySQL的安装配置教程

    1. 官网下载ZIP压缩版本(本人电脑是64位的) x64bit MySQL Community 2. 解压到E:\SoftwareFiles\mysql-5.7.11-winx64 3. 在E:\S ...