ZOJ Problem Set - 1004
Anagrams by Stack

Time Limit: 2 Seconds      Memory Limit: 65536 KB

How can anagrams result from sequences of stack operations? There are two sequences of stack operators which can convert TROT to TORT:

[
i i i i o o o o
i o i i o o i o
]

where i stands for Push and o stands for Pop. Your program should, given pairs of words produce sequences of stack operations which convert the first word to the second.

Input

The input will consist of several lines of input. The first line of each pair of input lines is to be considered as a source word (which does not include the end-of-line character). The second line (again, not including the end-of-line character) of each pair is a target word. The end of input is marked by end of file.

Output

For each input pair, your program should produce a sorted list of valid sequences of i and o which produce the target word from the source word. Each list should be delimited by

[
]

and the sequences should be printed in "dictionary order". Within each sequence, each i and o is followed by a single space and each sequence is terminated by a new line.

Process

A stack is a data storage and retrieval structure permitting two operations:

Push - to insert an item and
Pop - to retrieve the most recently pushed item

We will use the symbol i (in) for push and o (out) for pop operations for an initially empty stack of characters. Given an input word, some sequences of push and pop operations are valid in that every character of the word is both pushed and popped, and furthermore, no attempt is ever made to pop the empty stack. For example, if the word FOO is input, then the sequence:

i i o i o o is valid, but
i i o is not (it's too short), neither is
i i o o o i (there's an illegal pop of an empty stack)

Valid sequences yield rearrangements of the letters in an input word. For example, the input word FOO and the sequence i i o i o oproduce the anagram OOF. So also would the sequence i i i o o o. You are to write a program to input pairs of words and output all the valid sequences of i and o which will produce the second member of each pair from the first.

Sample Input

madam
adamm
bahama
bahama
long
short
eric
rice

Sample Output

[
i i i i o o o i o o
i i i i o o o o i o
i i o i o i o i o o
i i o i o i o o i o
]
[
i o i i i o o i i o o o
i o i i i o o o i o i o
i o i o i o i i i o o o
i o i o i o i o i o i o
]
[
]
[
i i o i o i o o
]

深度优先搜索即可。注意输出格式,每个i或者o后面都有空格

AC Code:
 #include <iostream>
#include <stack>
#include <cstdio>
#include <cstring> using namespace std; const int MAX_LEN = ;
char s[MAX_LEN], d[MAX_LEN], ans[MAX_LEN];
stack<char> sta; void DFS(int si, int di, int ansi) //三个参数分别是s,d,ans的下标
{
if(s[si] == '\0')
{
if(di == si)
{
for(int i = ; i < ansi; i++)
printf("%c ", ans[i]);
puts("");
return ;
}
else
{
if(!sta.empty() && sta.top() == d[di])
{
char t = sta.top();
sta.pop();
ans[ansi] = 'o';
DFS(si, di + , ansi + );
sta.push(t);
return ;
}
else return ;
}
}
sta.push(s[si]);
ans[ansi] = 'i';
DFS(si + , di, ansi + );
if(!sta.empty()) sta.pop();
if(!sta.empty() && sta.top() == d[di])
{
char t = sta.top();
sta.pop();
ans[ansi] = 'o';
DFS(si, di + , ansi + );
sta.push(t);
return ;
}
} int main()
{
while(scanf("%s %s", s, d) != EOF)
{
int lens = strlen(s);
int lend = strlen(d);
if(lens != lend)
{
printf("[\n]\n");
}
else
{
while(!sta.empty()) sta.pop();
printf("[\n");
DFS(, , );
printf("]\n");
}
}
return ;
}

Anagrams by Stack(深度优先搜索)的更多相关文章

  1. [ZOJ 1004] Anagrams by Stack (简单搜索)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1004 题目大意:给你个栈,给你源串和目标串,按字典序输出符合要求 ...

  2. castle problem——(深度优先搜索,递归实现和stack实现)

    将问题的各状态之间的转移关系描述为一个图,则深度优先搜索遍历整个图的框架为:Dfs(v) {if( v 访问过)return;将v标记为访问过;对和v相邻的每个点u: Dfs(u);}int main ...

  3. 【Acm】算法之美—Anagrams by Stack

    题目概述:Anagrams by Stack How can anagrams result from sequences of stack operations? There are two seq ...

  4. ZOJ 1004 Anagrams by Stack

    Anagrams by Stack 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1004 题意:通过堆栈实现将一 ...

  5. 深度优先搜索(DFS)

    定义: (维基百科:https://en.wikipedia.org/wiki/Depth-first_search) 深度优先搜索算法(Depth-First-Search),是搜索算法的一种.是沿 ...

  6. 图的遍历之深度优先搜索(DFS)

    深度优先搜索(depth-first search)是对先序遍历(preorder traversal)的推广.”深度优先搜索“,顾名思义就是尽可能深的搜索一个图.想象你是身处一个迷宫的入口,迷宫中的 ...

  7. stack+DFS ZOJ 1004 Anagrams by Stack

    题目传送门 /* stack 容器的应用: 要求字典序升序输出,所以先搜索入栈的 然后逐个判断是否满足答案,若不满足,回溯继续搜索,输出所有符合的结果 */ #include <cstdio&g ...

  8. HDU ACM 1515 Anagrams by Stack

    Anagrams by Stack Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. 深度优先搜索(DFS)——部分和问题

    对于深度优先搜索,这里有篇写的不错的博客:DFS算法介绍 .总得来说是从某个状态开始,不断的转移状态知道无法转移,然后回到前一步的状态.如此不断的重复一直到找到最终的解.根据这个特点,常常会用到递归. ...

随机推荐

  1. POJ题目分类推荐 (很好很有层次感)

    著名题单,最初来源不详.直接来源:http://blog.csdn.net/a1dark/article/details/11714009 OJ上的一些水题(可用来练手和增加自信) (POJ 3299 ...

  2. JAVA里面json和java对象之间的相互转换

    1. 把java 对象列表转换为json对象数组,并转为字符串 JSONArray array = JSONArray.fromObject(list);    String jsonstr = ar ...

  3. 1 RabbitMQ 安装,配置

    1:安装 yum install -y rabbitmq-server   2:主要程序介绍 # 管理插件的程序 /usr/sbin/rabbitmq-plugins # 服务程序 /usr/sbin ...

  4. 使用qemu-img创建虚拟磁盘文件

    # 安装qemu-img yum install -y qemu-img   # 获取帮助 qemu-img --help   # 支持的虚拟磁盘文件格式 Supported formats: vvf ...

  5. DNS服务器的解析

    ---恢复内容开始--- DNS前言: 英特网作为域名和IP地址相互映射的一个分不式数据库,能够使用户更方便的访问互联网.而不用去记住能够被机器直接读取的IP地址的过程叫做域名解析(或主机名解析).D ...

  6. Objective - C 之协议

    一.创建方法: 二.实现过程: 1.遵循协议: @protocol NurseWorkingProtocol <NSObject>   //<> 表示遵守协议,创建时就有(Nu ...

  7. 1st 四人小组项目

    小组名称:好好学习 项目组长:林莉 组员:王东涵.宫丽君.胡丽娜 项目选题:基于jsp的车库管理系统 项目期限:十周内<暂定> 需求分析:有待进一步思考

  8. 【Linux】- 六个超赞的字符画生成器

    ASCII是一个非常吸引人的字符编码系统,在计算机,通讯设备,以及其他设备中,通过它来用代码表示字符.新生代的人可能会觉得它已经过时了,但是那些熟悉它的人会懂得ASCII是多么的独特.我们在这里为你准 ...

  9. puppeteer设置代理并检查代理是否设置成功

    1. 设置代理: 这一步超级简单,但我掉到了坑里并扑腾了小一天的时间,那就是:箭头指向处一定一定不要加空格!!! 2. 检查代理是否设置成功: 在打开的浏览器里,打开百度,输入ip,如果查出来的结果跟 ...

  10. docker-py execute echo无效

    错误写法: cli.execute('9b2606a50304','echo "bibo">/tmp/1.txt')   争取写法: cli.execute('9b2606a ...