Tensorflow 梯度下降实例
# coding: utf-8 # #### 假设我们要最小化函数 $y=x^2$, 选择初始点 $x_0=5$ # #### 1. 学习率为1的时候,x在5和-5之间震荡。 # In[1]: import tensorflow as tf
TRAINING_STEPS = 10
LEARNING_RATE = 1
x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
y = tf.square(x) train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(y) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAINING_STEPS):
sess.run(train_op)
x_value = sess.run(x)
print "After %s iteration(s): x%s is %f."% (i+1, i+1, x_value) #result 学习率为1的时候,x在5和-5之间震荡。
# After 1 iteration(s): x1 is -5.000000.
# After 2 iteration(s): x2 is 5.000000.
# After 3 iteration(s): x3 is -5.000000.
# After 4 iteration(s): x4 is 5.000000.
# After 5 iteration(s): x5 is -5.000000.
# After 6 iteration(s): x6 is 5.000000.
# After 7 iteration(s): x7 is -5.000000.
# After 8 iteration(s): x8 is 5.000000.
# After 9 iteration(s): x9 is -5.000000.
# After 10 iteration(s): x10 is 5.000000. # #### 2. 学习率为0.001的时候,下降速度过慢,在901轮时才收敛到0.823355。 # In[2]: TRAINING_STEPS = 1000
LEARNING_RATE = 0.001
x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
y = tf.square(x) train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(y) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAINING_STEPS):
sess.run(train_op)
if i % 100 == 0:
x_value = sess.run(x)
print "After %s iteration(s): x%s is %f."% (i+1, i+1, x_value)
# After 1 iteration(s): x1 is 4.990000.
# After 101 iteration(s): x101 is 4.084646.
# After 201 iteration(s): x201 is 3.343555.
# After 301 iteration(s): x301 is 2.736923.
# After 401 iteration(s): x401 is 2.240355.
# After 501 iteration(s): x501 is 1.833880.
# After 601 iteration(s): x601 is 1.501153.
# After 701 iteration(s): x701 is 1.228794.
# After 801 iteration(s): x801 is 1.005850.
# After 901 iteration(s): x901 is 0.823355. # #### 3. 使用指数衰减的学习率,在迭代初期得到较高的下降速度,可以在较小的训练轮数下取得不错的收敛程度。 # In[3]: TRAINING_STEPS = 100
global_step = tf.Variable(0)
LEARNING_RATE = tf.train.exponential_decay(0.1, global_step, 1, 0.96, staircase=True) x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
y = tf.square(x)
train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(y, global_step=global_step) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAINING_STEPS):
sess.run(train_op)
if i % 10 == 0:
LEARNING_RATE_value = sess.run(LEARNING_RATE)
x_value = sess.run(x)
print "After %s iteration(s): x%s is %f, learning rate is %f."% (i+1, i+1, x_value, LEARNING_RATE_value) # After 1 iteration(s): x1 is 4.000000, learning rate is 0.096000.
# After 11 iteration(s): x11 is 0.690561, learning rate is 0.063824.
# After 21 iteration(s): x21 is 0.222583, learning rate is 0.042432.
# After 31 iteration(s): x31 is 0.106405, learning rate is 0.028210.
# After 41 iteration(s): x41 is 0.065548, learning rate is 0.018755.
# After 51 iteration(s): x51 is 0.047625, learning rate is 0.012469.
# After 61 iteration(s): x61 is 0.038558, learning rate is 0.008290.
# After 71 iteration(s): x71 is 0.033523, learning rate is 0.005511.
# After 81 iteration(s): x81 is 0.030553, learning rate is 0.003664.
# After 91 iteration(s): x91 is 0.028727, learning rate is 0.002436.
Tensorflow 梯度下降实例的更多相关文章
- Tensorflow梯度下降应用
import tensorflow as tfimport numpy as np #使用numpy生成随机点x_data = np.random.rand(100)y_data = x_data*0 ...
- tensorflow梯度下降
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt num_points = 1000 vectors ...
- TensorFlow实现梯度下降
# -*- coding: utf-8 -*- """ Created on Mon Oct 15 17:38:39 2018 @author: zhen "& ...
- Python之TensorFlow的变量收集、自定义命令参数、矩阵运算、梯度下降-4
一.TensorFlow为什么要存在变量收集的过程,主要目的就是把训练过程中的数据,比如loss.权重.偏置等数据通过图形展示的方式呈现在开发者的眼前. 自定义参数:自定义参数,主要是通过Python ...
- Tensorflow细节-P84-梯度下降与批量梯度下降
1.批量梯度下降 批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新.从数学上理解如下: 对应的目标函数(代价函数)即为: (1)对目标函数求偏导: (2)每次迭代对参数进 ...
- 线性回归、梯度下降(Linear Regression、Gradient Descent)
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...
- Andrew Ng机器学习课程笔记--week10(优化梯度下降)
本周主要介绍了梯度下降算法运用到大数据时的优化方法. 一.内容概要 Gradient Descent with Large Datasets Stochastic Gradient Descent M ...
- 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量
[前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...
- 梯度下降与pytorch
记得在tensorflow的入门里,介绍梯度下降算法的有效性时使用的例子求一个二次曲线的最小值. 这里使用pytorch复现如下: 1.手动计算导数,按照梯度下降计算 import torch #使用 ...
随机推荐
- C#返回多个参数 ref及out
out 关键字会导致参数通过引用来传递.这与 ref 关键字类似,不同之处在于 ref 要求变量必须在传递之前进行初始化.若要使用 out 参数,方法定义和调用方法都必须显式使用 out 关键字.例如 ...
- eclipse debug 错误 之 processWorkerExit
eclipe 在debug模式下,有时候老是跳转到 ThreadPoolExecutor 之 processWorkerExit方法,很是让人恼火,是 因为在 java.util.concurrent ...
- 娓娓道来c指针 (4)解析c的声明语句
(4)解析c的声明语句 在继续探索c指针之前.有必要来解析下c语言中复杂的声明语法. 仅仅须要记住两则:一个原则,一个规则. 原则:先看标示符. 规则:运算符优先级是规则. 举例说明 1.最简单的 i ...
- 在linux下新增一块硬盘的操作。(包含大于2T的硬盘在linux下挂载操作)
转自:http://blog.csdn.net/season_hangzhou/article/details/36423223 一.安装硬盘到物理机上. 二.查看硬盘是否正确安装. 使用“fdisk ...
- 使用overflow:hidden处理元素溢出和坍塌
溢出 css溢出示意如图,子元素(背景为粉色)的长度或宽度超出父元素(背景为绿色). 通过为父元素赋 overflow:hidden 样式可将子元素超出父元素的部分隐藏起来. 也可为父元素赋 over ...
- eclipse使用git提交本地项目,提交至远程github上
准备工作: 目的:eclipse使用git提交本地项目,提交至远程github上 eclipse版本:eclipse4.5 64位 jdk版本:jdk-1.7 64位 项目类型:maven web项 ...
- 你所不知道的 CSS 阴影技巧与细节 滚动视差?CSS 不在话下 神奇的选择器 :focus-within 当角色转换为面试官之后 NPOI 教程 - 3.2 打印相关设置 前端XSS相关整理 委托入门案例
你所不知道的 CSS 阴影技巧与细节 关于 CSS 阴影,之前已经有写过一篇,box-shadow 与 filter:drop-shadow 详解及奇技淫巧,介绍了一些关于 box-shadow ...
- Oracle忘记密码找回
生活中,容易忘记Oracle数据库system用户的密码,怎么办呢,小生带你一步步重新登上Oracle ,及时你密码忘记了. 1.打开cmd窗口,输入 sqlplus / as sysdba 2.运行 ...
- chome 离线安装包地址
https://www.chromedownloads.net/chrome32win-stable/ --32bit https://www.chromedownloads.net/chrome6 ...
- C# AutoResetEvent
文章转载自:C# AutoResetEvent AutoResetEvent 常常被用来在两个线程之间进行信号发送 AutoResetEvent是.net线程简易同步方法中的一种,两个线程共享相同的A ...