# coding: utf-8

# #### 假设我们要最小化函数  $y=x^2$, 选择初始点   $x_0=5$

# #### 1. 学习率为1的时候,x在5和-5之间震荡。

# In[1]:

import tensorflow as tf
TRAINING_STEPS = 10
LEARNING_RATE = 1
x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
y = tf.square(x) train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(y) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAINING_STEPS):
sess.run(train_op)
x_value = sess.run(x)
print "After %s iteration(s): x%s is %f."% (i+1, i+1, x_value) #result 学习率为1的时候,x在5和-5之间震荡。
# After 1 iteration(s): x1 is -5.000000.
# After 2 iteration(s): x2 is 5.000000.
# After 3 iteration(s): x3 is -5.000000.
# After 4 iteration(s): x4 is 5.000000.
# After 5 iteration(s): x5 is -5.000000.
# After 6 iteration(s): x6 is 5.000000.
# After 7 iteration(s): x7 is -5.000000.
# After 8 iteration(s): x8 is 5.000000.
# After 9 iteration(s): x9 is -5.000000.
# After 10 iteration(s): x10 is 5.000000. # #### 2. 学习率为0.001的时候,下降速度过慢,在901轮时才收敛到0.823355。 # In[2]: TRAINING_STEPS = 1000
LEARNING_RATE = 0.001
x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
y = tf.square(x) train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(y) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAINING_STEPS):
sess.run(train_op)
if i % 100 == 0:
x_value = sess.run(x)
print "After %s iteration(s): x%s is %f."% (i+1, i+1, x_value)
# After 1 iteration(s): x1 is 4.990000.
# After 101 iteration(s): x101 is 4.084646.
# After 201 iteration(s): x201 is 3.343555.
# After 301 iteration(s): x301 is 2.736923.
# After 401 iteration(s): x401 is 2.240355.
# After 501 iteration(s): x501 is 1.833880.
# After 601 iteration(s): x601 is 1.501153.
# After 701 iteration(s): x701 is 1.228794.
# After 801 iteration(s): x801 is 1.005850.
# After 901 iteration(s): x901 is 0.823355. # #### 3. 使用指数衰减的学习率,在迭代初期得到较高的下降速度,可以在较小的训练轮数下取得不错的收敛程度。 # In[3]: TRAINING_STEPS = 100
global_step = tf.Variable(0)
LEARNING_RATE = tf.train.exponential_decay(0.1, global_step, 1, 0.96, staircase=True) x = tf.Variable(tf.constant(5, dtype=tf.float32), name="x")
y = tf.square(x)
train_op = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(y, global_step=global_step) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(TRAINING_STEPS):
sess.run(train_op)
if i % 10 == 0:
LEARNING_RATE_value = sess.run(LEARNING_RATE)
x_value = sess.run(x)
print "After %s iteration(s): x%s is %f, learning rate is %f."% (i+1, i+1, x_value, LEARNING_RATE_value) # After 1 iteration(s): x1 is 4.000000, learning rate is 0.096000.
# After 11 iteration(s): x11 is 0.690561, learning rate is 0.063824.
# After 21 iteration(s): x21 is 0.222583, learning rate is 0.042432.
# After 31 iteration(s): x31 is 0.106405, learning rate is 0.028210.
# After 41 iteration(s): x41 is 0.065548, learning rate is 0.018755.
# After 51 iteration(s): x51 is 0.047625, learning rate is 0.012469.
# After 61 iteration(s): x61 is 0.038558, learning rate is 0.008290.
# After 71 iteration(s): x71 is 0.033523, learning rate is 0.005511.
# After 81 iteration(s): x81 is 0.030553, learning rate is 0.003664.
# After 91 iteration(s): x91 is 0.028727, learning rate is 0.002436.

Tensorflow 梯度下降实例的更多相关文章

  1. Tensorflow梯度下降应用

    import tensorflow as tfimport numpy as np #使用numpy生成随机点x_data = np.random.rand(100)y_data = x_data*0 ...

  2. tensorflow梯度下降

    import numpy as np import tensorflow as tf import matplotlib.pyplot as plt num_points = 1000 vectors ...

  3. TensorFlow实现梯度下降

    # -*- coding: utf-8 -*- """ Created on Mon Oct 15 17:38:39 2018 @author: zhen "& ...

  4. Python之TensorFlow的变量收集、自定义命令参数、矩阵运算、梯度下降-4

    一.TensorFlow为什么要存在变量收集的过程,主要目的就是把训练过程中的数据,比如loss.权重.偏置等数据通过图形展示的方式呈现在开发者的眼前. 自定义参数:自定义参数,主要是通过Python ...

  5. Tensorflow细节-P84-梯度下降与批量梯度下降

    1.批量梯度下降 批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新.从数学上理解如下: 对应的目标函数(代价函数)即为: (1)对目标函数求偏导: (2)每次迭代对参数进 ...

  6. 线性回归、梯度下降(Linear Regression、Gradient Descent)

    转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: ...

  7. Andrew Ng机器学习课程笔记--week10(优化梯度下降)

    本周主要介绍了梯度下降算法运用到大数据时的优化方法. 一.内容概要 Gradient Descent with Large Datasets Stochastic Gradient Descent M ...

  8. 采用梯度下降优化器(Gradient Descent optimizer)结合禁忌搜索(Tabu Search)求解矩阵的全部特征值和特征向量

    [前言] 对于矩阵(Matrix)的特征值(Eigens)求解,采用数值分析(Number Analysis)的方法有一些,我熟知的是针对实对称矩阵(Real Symmetric Matrix)的特征 ...

  9. 梯度下降与pytorch

    记得在tensorflow的入门里,介绍梯度下降算法的有效性时使用的例子求一个二次曲线的最小值. 这里使用pytorch复现如下: 1.手动计算导数,按照梯度下降计算 import torch #使用 ...

随机推荐

  1. 利用ThreadLocal建立高质量事务处理

    ThreadLocal此类是一个以当前线程为key的map对象的构想. 当我们在web开发中,多个浏览器访问的时候,servlet为它们各开线程执行相应代码,而事务的执行依赖于特定的一个Connect ...

  2. python基础篇---列表---知识点回顾

    列表:数据的集合,里面可以放任何的数据类型,可进行增删改查等操作 有序列表功能(index是列表的索引值): ①创建:用  []  表示,里面添加元素,如n2 = [1,2,4,5,5]:    或者 ...

  3. python笔记-列表和元组

    列表和元组: -可以将列表和元组当成普通的数组 -列表和元组可以保存任意类型的python对象 -通过从0开始的数字索引访问元素 -列表和元组可以存储不同类型的对象 列表和元组的区别: -列表元素使用 ...

  4. C#:使用Window自带函数(如:user32.dll)

    [DllImport("user32.dll", EntryPoint = "GetScrollInfo", CallingConvention = Calli ...

  5. xml去除指定节点,保留子节点操作

    现有xml文件: <?xml version="1.0" encoding="utf-8" ?> <ShiftConfig xmlns:xsi ...

  6. SQL Server 2008、SQL Server 2008R2 自动备份数据库

    让SQL Server 2008自动备份数据库,需要建立一个SQL Server作业,并启动SQL Server代理,使该作业定期运行. 具体来说,可以按以下步骤进行: 一.打开SQL Server ...

  7. java Arrays对数组操作

    Arrays.sort(Array)对数组排序 public static void main(String[] args) throws IOException { int[] a = {1,3,9 ...

  8. Linux iptables常用命令

    iptables 是 Linux 中重要的访问控制手段,是俗称的 Linux 防火墙系统的重要组成部分.这里记录了iptables 防火墙规则的一些常用的操作指令. 下面的操作以 CentOS 为基础 ...

  9. 二级指针 (C语言)

    二级指针又叫双指针.C语言中不存在引用,所以当你试图改变一个指针的值的时候必须使用二级指针.C++中可以使用引用类型来实现. 下面讲解C中的二级指针的使用方法. 例如我们使用指针来交换两个整型变量的值 ...

  10. mplayer 全屏问题

    [root@ok home]# gedit ~/.mplayer/config # Write your default config options here! zoom=yes #加上这个参数!全 ...