http://acm.hdu.edu.cn/howproblem.php?pid=2199

Can you solve this equation?

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 13468    Accepted Submission(s): 6006

Problem Description
Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;
Now please try your lucky.
 
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
 
Output
For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
 
Sample Input
2
100
-4
 
Sample Output
1.6152
No solution!
 
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define N 100010 using namespace std; int main()
{
int t, y;
double low, high, mid, k, x1, x2;
scanf("%d", &t);
while(t--)
{
scanf("%d", &y);
low = ;
high = ;
x1 = * pow(, ) + * pow(, ) + * pow(, ) + * + ;
x2 = * pow(, ) + * pow(, ) + * pow(, ) + * + ;
if(x1 <= y && y <= x2)
{
while(high - low > 1e-)/*注意1e-7*/
{
mid = (low + high) / ;
k = * pow(mid, ) + * pow(mid, ) + * pow(mid, ) + * mid + ;
if(k > y)
high = mid - 1e-;
else if(k < y)
low = mid + 1e-;
}
printf("%.4f\n", 1.0 * (low + high) / );
}
else
printf("No solution!\n"); }
return ;
}

hdu 2199 Can you solve this equation?(高精度二分)的更多相关文章

  1. HDU 2199 Can you solve this equation(二分答案)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  2. HDU 2199 Can you solve this equation?【二分查找】

    解题思路:给出一个方程 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,求方程的解. 首先判断方程是否有解,因为该函数在实数范围内是连续的,所以只需使y的值满足f(0)< ...

  3. HDU 2199 Can you solve this equation?(二分精度)

    HDU 2199 Can you solve this equation?     Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == ...

  4. HDU 2199 Can you solve this equation?(二分解方程)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=2199 Can you solve this equation? Time Limit: 2000/10 ...

  5. ACM:HDU 2199 Can you solve this equation? 解题报告 -二分、三分

    Can you solve this equation? Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Su ...

  6. hdu 2199 Can you solve this equation?(二分搜索)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  7. hdu 2199:Can you solve this equation?(二分搜索)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  8. HDU 2199 Can you solve this equation? (二分 水题)

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  9. HDU - 2199 Can you solve this equation? 二分 简单题

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

随机推荐

  1. UVALive 3989 Ladies' Choice(稳定婚姻问题:稳定匹配、合作博弈)

    题意:男女各n人,进行婚配,对于每个人来说,所有异性都存在优先次序,即最喜欢某人,其次喜欢某人...输出一个稳定婚配方案.所谓稳定,就是指未结婚的一对异性,彼此喜欢对方的程度都胜过自己的另一半,那么这 ...

  2. IOS中UIWebView执行javaScript脚本时注意点

    1.webView之所以能够滚动,因为它内部有一个UIScrollView子控件 2.移除webView顶部和底部灰色的一层view * 遍历webView中scrollView内部的所有子控件 * ...

  3. S2sh整合MAven项目所需坐标大全

    <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> & ...

  4. (六)6.11 Neurons Networks implements of self-taught learning

    在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...

  5. 【英语】Bingo口语笔记(4) - Pick系列

    take your pick. 你挑吧 pick on 找茬

  6. android4.0以上部分手机绘图时会出现重影

    canvas外层的div需要设定属性style="overflow:visible;-webkit-transform: translateZ(0);

  7. MySQL与Oracle 差异比较之五存储过程&Function

    存储过程&Function 编号 类别 ORACLE MYSQL 注释 1 创建存储过程语句不同 create or replace procedure P_ADD_FAC(   id_fac ...

  8. [再寄小读者之数学篇](2014-11-19 $\sin(x+y)=\sin x\cos y+\cos x\sin y$)

    $$\bex \sin(x+y)=\sin x\cos y+\cos x\sin y. \eex$$ Ref. [Proof Without Words: Sine Sum Identity, The ...

  9. C++ STL疑惑知识点

    1.remove的问题 用法参考:http://www.cnblogs.com/heyonggang/p/3263568.html

  10. saltstack配置安装的一些关键步骤及安装时各种报错的分析

    以下其他仅做参考,官方网址才是安装重点:http://docs.saltstack.cn/topics/installation/rhel.html 与安装相关的一些文档或资料: 一.linux服务器 ...