Longest Valid Parentheses(最长有效括号)
Given a string containing just the characters '('
and ')'
, find the length of the longest valid (well-formed) parentheses substring.
For "(()"
, the longest valid parentheses substring is "()"
, which has length = 2.
Another example is ")()())"
, where the longest valid parentheses substring is "()()"
, which has length = 4.
分析:
求最长合法匹配的长度,这道题可以用一维动态规划逆向求解。假设输入括号表达式为String s,维护一个长度为s.length的一维数组dp[],数组元素初始化为0。 dp[i]表示从s[i]到s[s.length - 1] 包含s[i] 的最长的有效匹配括号子串长度。则存在如下关系:
- dp[s.length - 1] = 0;
- i从n - 2 -> 0逆向求dp[],并记录其最大值。若s[i] == '(',则在s中从i开始到s.length - 1计算dp[i]的值。这个计算分为两步,通过dp[i + 1]进行的(注意dp[i + 1]已经在上一步求解):
在s中寻找从i + 1开始的有效括号匹配子串长度,即dp[i + 1],跳过这段有效的括号子串,查看下一个字符,其下标为j = i + 1 + dp[i + 1]。若j没有越界,并且s[j] == ‘)’,则s[i ... j]为有效括号匹配,dp[i] =dp[i + 1] + 2。
- 在求得了s[i ... j]的有效匹配长度之后,若j + 1没有越界,则dp[i]的值还要加上从j + 1开始的最长有效匹配,即dp[j + 1]。
class Solution {
public:
int longestValidParentheses(string s) {
int len = s.length();
if(len<2)
return 0;
int max = 0;
int *dp = new int[len];
for(int k = 0;k<len;k++)//把辅助数组清空,存储为0
dp[k] = 0;
for(int i = len-2;i>=0;i--)
{
if(s[i] == '(')//只对左括号处理,右括号在数组中存储为0
{
int j = i+1+dp[i+1];//计算与当前左括号匹配的右括号的位置。可能存在也可能不存在
if(j<len && s[j] == ')')//确保位置不能越界
{
dp[i] = dp[i+1] + 2;//找到了相匹配的右括号,当前数组中存储的最长长度是它后一个位置加2,后一个位置可能存储长度是0
if(j+1<len)//这是连接两个子匹配的关键步骤
dp[i] += dp[j+1];//在j的后面可能已经存在连续的匹配,要记得加上。dp[j+1]存储了以j+1开始的匹配
}
if(dp[i]>max)
max = dp[i];//更新最长长度
} }
return max;
}
};
其他方法:
stack 并不存字符, 而是存储左括号的位置, 失去匹配的右括号作为分隔符
class Solution {
public:
int ans;
int sum;
int longestValidParentheses(string s) {
ans = sum = 0;
deque<int> stack;
if(s.size() <= 0)
return 0;
int last = -1;
for(int i = 0; i < s.size(); i ++) {
if(s[i] == '(') {
stack.push_back(i);
}else{
if(stack.empty()) {
last = i;
}else{
stack.pop_back();
if(stack.empty()) {
ans = max(ans, i-last);
}else{
ans = max(ans, i-stack.back());
} }
}
}
return ans;
}
};
Longest Valid Parentheses(最长有效括号)的更多相关文章
- [LeetCode] Longest Valid Parentheses 最长有效括号
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- [leetcode]32. Longest Valid Parentheses最长合法括号子串
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- [LeetCode] 32. Longest Valid Parentheses 最长有效括号
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- 032 Longest Valid Parentheses 最长有效括号
给一个只包含 '(' 和 ')' 的字符串,找出最长的有效(正确关闭)括号子串的长度.对于 "(()",最长有效括号子串为 "()" ,它的长度是 2.另一个例 ...
- 32. Longest Valid Parentheses最长有效括号
参考: 1. https://leetcode.com/problems/longest-valid-parentheses/solution/ 2. https://blog.csdn.net/ac ...
- [Leetcode] longest valid parentheses 最长的有效括号
Given a string containing just the characters'('and')', find the length of the longest valid (well-f ...
- [Swift]LeetCode32. 最长有效括号 | Longest Valid Parentheses
Given a string containing just the characters '(' and ')', find the length of the longest valid (wel ...
- LeetCode 32. 最长有效括号(Longest Valid Parentheses) 31
32. 最长有效括号 32. Longest Valid Parentheses 题目描述 给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度. 每日一算法2019/6/ ...
- 32. Longest Valid Parentheses(最长括号匹配,hard)
Given a string containing just the characters '(' and ')', find the length of the longest valid (w ...
随机推荐
- 【前端】js转码
js转码 function urlencode (str) { str = (str + '').toString(); return encodeURIComponent(str).replace( ...
- Telnet、FTP、SSH、SFTP、SCP
[Telnet]著名的终端访问协议,传统的网络服务程序,如FTP.POP和Telnet,其本质上都是不安全的:因为它们在网络上用明文传送数据.用户帐号和用户口令. [telnet命令]telnet h ...
- ZOJ3229 Shoot the Bullet(有源汇的上下界最大流)
#pragma warning(disable:4996) #include <iostream> #include <cstring> #include <string ...
- Eclipse环境下配置spket中ExtJS提示
使用eclipse编写extjs时,一定会用到spket这个插件,spket可以单独当作ide使用,也可以当作eclipse插件使用,我这里是当作eclipse的插件使用的,下面来一步步图解说明如何配 ...
- node操作mysql数据库
1.建立数据库连接:createConnection(Object)方法 该方法接受一个对象作为参数,该对象有四个常用的属性host,user,password,database.与php ...
- 小奇模拟赛9.13 by hzwer
2015年9月13日NOIP模拟赛 by hzwer (这是小奇=> 小奇挖矿(explo) [题目背景] 小奇要开采一些矿物,它驾驶着一台带有钻头(初始能力值w)的飞船,按既定路线依次飞 ...
- lintcode:快乐数
快乐数 写一个算法来判断一个数是不是"快乐数". 一个数是不是快乐是这么定义的:对于一个正整数,每一次将该数替换为他每个位置上的数字的平方和,然后重复这个过程直到这个数变为1,或是 ...
- lintcode:装最多水的容器
装最多水的容器 给定 n 个非负整数 a1, a2, ..., an, 每个数代表了坐标中的一个点 (i, ai).画 n 条垂直线,使得 i 垂直线的两个端点分别为(i, ai)和(i, 0).找到 ...
- VS2008 引用程序集 没有强名称 解决办法
为项目添加强名称方法:1.右键单击项目,打开属性窗口;2.在属性窗口里选择<签名>标签,选中为程序集签名的选项,在下拉列表里选择新建 3.打开新建签名窗口,输入签名的名称密码等内容 单击确 ...
- 超级内存NVDIMM:下一代数据中心存储关键技术
1.背景介绍 连接到互联网的设备数量不断增长,到2015年,将达到150亿之多.而数据中心的压力也随之增加,唯有采用新的技术才能进一步提升其效率和性能. 相比于HDD传统硬盘,固态硬盘大大增加了I/O ...