As you must have experienced, instead of landing immediately, an aircraft sometimes waits in a holding loop close to the runway. This holding mechanism is required by air traffic controllers to space apart aircraft as much as possible on the runway (while keeping delays low). It is formally defined as a ``holding pattern'' and is a predetermined maneuver designed to keep an aircraft within a specified airspace (see Figure 1 for an example).

Figure 1: A simple Holding Pattern as described in a pilot text book.
 

Jim Tarjan, an air-traffic controller, has asked his brother Robert to help him to improve the behavior of the airport.

The TRACON area

The Terminal Radar Approach CONtrol (TRACON) controls aircraft approaching and departing when they are between 5 and 50 miles of the airport. In this final scheduling process, air traffic controllers make some aircraft wait before landing. Unfortunately this ``waiting'' process is complex as aircraft follow predetermined routes and their speed cannot be changed. To reach some degree of flexibility in the process, the basic delaying procedure is to make aircraft follow a holding pattern that has been designed for the TRACON area. Such patterns generate a constant prescribed delay for an aircraft (see Figure 1 for an example). Several holding patterns may exist in the same TRACON.

In the following, we assume that there is a single runway and that when an aircraft enters the TRACON area, it is assigned an early landing time, a late landing time and a possible holding pattern. The early landing time corresponds to the situation where the aircraft does not wait and lands as soon as possible. The late landing time corresponds to the situation where the aircraft waits in the prescribed holding pattern and then lands at that time. We assume that an aircraft enters at most one holding pattern. Hence, the early and late landing times are the only two possible times for the landing.

The security gap is the minimal elapsed time between consecutive landings. The objective is to maximize the security gap. Robert believes that you can help.

Example

Assume there are 10 aircraft in the TRACON area. Table 1 provides the corresponding early and late landing times (columns ``Early'' and ``Late'').

Table 1: A 10 aircraft instance of the problem.
 
Aircraft Early Late Solution
A1 44 156 Early
A2 153 182 Early
A3 48 109 Late
A4 160 201 Late
A5 55 186 Late
A6 54 207 Early
A7 55 165 Late
A8 17 58 Early
A9 132 160 Early
A10 87 197 Early

The maximal security gap is 10 and the corresponding solution is reported in Table 1 (column ``Solution''). In this solution, the aircraft land in the following order: A8A1A6A10A3A9A2A7A5A4. The security gap is realized by aircraft A1 and A6.

Input

The input file, that contains all the relevant data, contains several test cases

Each test case is described in the following way. The first line contains the number n of aircraft ( 2n2000). This line is followed by n lines. Each of these lines contains two integers, which represent the early landing time and the late landing time of an aircraft. Note that all times t are such that 0t107.

Output

For each input case, your program has to write a line that conttains the maximal security gap between consecutive landings.

Sample Input

10
44 156
153 182
48 109
160 201
55 186
54 207
55 165
17 58
132 160
87 197

Sample Output

10

Note: The input file corresponds to Table 1.

Robert's Hints

Optimization vs. Decision
Robert advises you to work on the decision variant of the problem. It can then be stated as follows: Given an integer p, and an instance of the optimization problem, the question is to decide if there is a solution with security gap p or not. Note that, if you know how to solve the decision variant of an optimization problem, you can build a binary search algorithm to find the optimal solution.

On decision
Robert believes that the decision variant of the problem can be modeled as a very particular boolean satisfaction problem. Robert suggests to associate a boolean variable per aircraft stating whether the aircraft is early (variable takes value ``true'') or late (value ``false''). It should then be easy to see that for some aircraft to land at some time has consequences for the landing times of other aircraft. For instance in Table 1 and with a delay of 10, if aircraft A1 lands early, then aircraft A3has to land late. And of course, if aircraft A3 lands early, then aircraft A1 has to land late. That is, aircraft A1 and A3 cannot both land early and formula (A1  ¬A3 (A3  ¬A1) must hold.

And now comes Robert's big insight: our problem has a solution, if and only if we have no contradiction. A contradiction being something like Ai  ¬Ai.

二分答案走2 - sat

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#include <vector>
#include <cmath> using namespace std; const int MAX_N = ;
int N,dfs_clock,scc_cnt;
int low[MAX_N],pre[MAX_N],cmp[MAX_N];
int E[MAX_N],L[MAX_N];
stack<int> S;
vector<int> G[MAX_N]; void dfs(int u) {
low[u] = pre[u] = ++dfs_clock;
S.push(u);
for(int i = ; i < G[u].size(); ++i) {
int v = G[u][i];
if(!pre[v]) {
dfs(v);
low[u] = min(low[u],low[v]);
} else if(!cmp[v]) {
low[u] = min(low[u],pre[v]);
}
} if(pre[u] == low[u]) {
++scc_cnt;
for(;;) {
int x = S.top(); S.pop();
cmp[x] = scc_cnt;
if(x == u) break;
}
}
} void scc() {
dfs_clock = scc_cnt = ;
memset(cmp,,sizeof(cmp));
memset(pre,,sizeof(pre)); for(int i = ; i <= * N; ++i){
if(!pre[i]) dfs(i);
}
} bool check(int x) {
for(int i = ; i <= * N; ++i) G[i].clear(); for(int i = ; i <= N; ++i) {
for(int j = ; j <= N; ++j) {
if(i == j) continue;
if(abs(E[i] - E[j]) < x) {
G[i].push_back(j + N);
G[j].push_back(i + N);
}
if(abs(E[i] - L[j]) < x) {
G[i].push_back(j);
G[j + N].push_back(i + N);
}
if(abs(L[i] - E[j]) < x) {
G[i + N].push_back(j + N);
G[j].push_back(i);
}
if(abs(L[i] - L[j]) < x) {
G[i + N].push_back(j);
G[j + N].push_back(i);
} }
} scc();
for(int i = ; i <= N; ++i) if(cmp[i] == cmp[i + N]) return false;
return true;
} void solve() {
int l = ,r = ;
for(int i = ; i <= N; ++i) {
r = max(r,E[i]);
r = max(r,L[i]);
} while(l < r) {
int mid = (l + r + ) / ;
if(check(mid)) l = mid;
else r = mid - ;
} printf("%d\n",l); } int main()
{
//freopen("sw.in","r",stdin);
while(~scanf("%d",&N)) {
for(int i = ; i <= N; ++i) {
scanf("%d%d",&E[i],&L[i]);
} solve();
}
//cout << "Hello world!" << endl;
return ;
}

LA 3211的更多相关文章

  1. LA 3211 飞机调度

    题目链接:http://vjudge.net/contest/142615#problem/A 题意:n架飞机,每架可选择两个着落时间.安排一个着陆时间表,使得着陆间隔的最小值最大. 分析: 最小值最 ...

  2. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  3. 飞机调度 Now or Later? LA 3211 (2-SAT问题)

    洛谷题目传送门 题目描述 有n架飞机需要着陆.每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种.第i架飞机的早着陆时间为Ei,晚着陆时间为Li,不得在其他时间着陆.你的任务是为这些 ...

  4. 2-SAT 问题与解法小结

    2-SAT 问题与解法小结 这个算法十分的奇妙qwq... 将一类判定问题转换为图论问题,然后就很容易解决了. 本文有一些地方摘录了一下赵爽<2-SAT解法浅析> (侵删) 一些概念: \ ...

  5. leggere la nostra recensione del primo e del secondo

    La terra di mezzo in trail running sembra essere distorto leggermente massima di recente, e gli aggi ...

  6. Le lié à la légèreté semblait être et donc plus simple

    Il est toutefois vraiment à partir www.runmasterfr.com/free-40-flyknit-2015-hommes-c-1_58_59.html de ...

  7. Mac Pro 使用 ll、la、l等ls的别名命令

    在 Linux 下习惯使用 ll.la.l 等ls别名的童鞋到 mac os 可就郁闷了~~ 其实只要在用户目录下建立一个脚本“.bash_profile”, vim .bash_profile 并输 ...

  8. Linux中的动态库和静态库(.a/.la/.so/.o)

    Linux中的动态库和静态库(.a/.la/.so/.o) Linux中的动态库和静态库(.a/.la/.so/.o) C/C++程序编译的过程 .o文件(目标文件) 创建atoi.o 使用atoi. ...

  9. BZOJ 3211 题解

    3211: 花神游历各国 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2549  Solved: 946[Submit][Status][Discus ...

随机推荐

  1. Linux环境下常用regexp的使用

    正则表达式 REGular EXPression   的简写元字符 匹配次数 位置锚定 分组 --------------------------------------元字符. 匹配任意单个字符 [ ...

  2. 整齐地输出n的平方,立方

    初学C语言,有许多搞不明白的地方.编程,最重要的就是实践.今天,我偶然间看到书上的练习,做了一个能整齐地输出n,n的平方,n的立方的小程序.首先,我先用伪代码设计程序: 提示用户输入表格上限,下限或退 ...

  3. scp 跨机远程拷贝

    scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器. 命令格式: scp [参数] [原路径] [目标路径] ...

  4. outlook配置

    有时打开outlook报错.步骤如下: 一.打开控制面板-邮件-电子邮件账户-新建 二.具体设置如下: 三.点第二步上的“其他设置(M)”.做发送服务器.

  5. hdu 1427 速算24点

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1427 速算24点 Description 速算24点相信绝大多数人都玩过.就是随机给你四张牌,包括A( ...

  6. bzoj 1054 移动玩具

    题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1054 移动玩具 Description 在一个4*4的方框内摆放了若干个相同的玩具,某人想 ...

  7. hdu 5427 A problem of sorting

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5427 A problem of sorting Description There are many ...

  8. hdu 2579 Dating with girls(2)

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2579 Dating with girls(2) Description If you have sol ...

  9. SQL Server实现数据的递归查询

    在一次项目中遇到一种需求,需要记录某产品的替换记录. 实际应用举例为:产品101被201替换,之后201又被303替换,303又被109替换:产品102被202替换,之后202又被105替换. 现在我 ...

  10. Linux下如何使CP命令不提示覆盖

    在Linux下使用CP命令,经常会提示是否覆盖,如果是太批量的文件覆盖,老是这么提示,会很烦的.那如何解决这个问题呢? 我们先来看一下原因吧! 一般我们使用的命令是cp -rf sourcefile ...