Brainman
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 7810   Accepted: 4261

Description

Background 

Raymond Babbitt drives his brother Charlie mad. Recently Raymond counted 246 toothpicks spilled all over the floor in an instant just by glancing at them. And he can even count Poker cards. Charlie would love to be able to do cool things like that, too. He
wants to beat his brother in a similar task. 



Problem 

Here's what Charlie thinks of. Imagine you get a sequence of N numbers. The goal is to move the numbers around so that at the end the sequence is ordered. The only operation allowed is to swap two adjacent numbers. Let us try an example: 

Start with: 2 8 0 3 

swap (2 8) 8 2 0 3 

swap (2 0) 8 0 2 3 

swap (2 3) 8 0 3 2 

swap (8 0) 0 8 3 2 

swap (8 3) 0 3 8 2 

swap (8 2) 0 3 2 8 

swap (3 2) 0 2 3 8 

swap (3 8) 0 2 8 3 

swap (8 3) 0 2 3 8


So the sequence (2 8 0 3) can be sorted with nine swaps of adjacent numbers. However, it is even possible to sort it with three such swaps: 

Start with: 2 8 0 3 

swap (8 0) 2 0 8 3 

swap (2 0) 0 2 8 3 

swap (8 3) 0 2 3 8


The question is: What is the minimum number of swaps of adjacent numbers to sort a given sequence?Since Charlie does not have Raymond's mental capabilities, he decides to cheat. Here is where you come into play. He asks you to write a computer program for him
that answers the question. Rest assured he will pay a very good prize for it.

Input

The first line contains the number of scenarios. 

For every scenario, you are given a line containing first the length N (1 <= N <= 1000) of the sequence,followed by the N elements of the sequence (each element is an integer in [-1000000, 1000000]). All numbers in this line are separated by single blanks.

Output

Start the output for every scenario with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the minimal number of swaps of adjacent numbers that are necessary to sort the given sequence.
Terminate the output for the scenario with a blank line.

Sample Input

4
4 2 8 0 3
10 0 1 2 3 4 5 6 7 8 9
6 -42 23 6 28 -100 65537
5 0 0 0 0 0

Sample Output

Scenario #1:
3 Scenario #2:
0 Scenario #3:
5 Scenario #4:
0

归并排序求出逆序数,拿的以前写好的模板,速度还不错,不过发现之前模板有一个错误,就是合并完以后并没有释放new的空间,在POJ上运行没问题,就是内存大一点,但是在NYOJ上,如果不delete就会MLE,两题的格式不一样,以下是POJ的AC代码,NYOJ需要修改输出格式才能AC

#include<stdio.h>
#include<iostream>
using namespace std;
int array[1000001];
long long flag = 0;
void merg(int head, int tail)
{
int mid = (tail + head) / 2 + 1;
int * new_array = new int[(tail - head) + 1];
int top1 = head;
int top2 = mid;
int i;
for(i = 0; top1 < mid && top2 <= tail ; i++)
{
if(array[top1] > array[top2])
{
new_array[i] = array[top2];
top2 ++;
}
else
{
new_array[i] = array[top1];
flag += top2 - (mid);
top1 ++;
}
}
if(top1 == mid && top2 <= tail)
{
while(top2 <= tail)
new_array[i++] = array[top2++];
}
else if(top1 != mid && top2 > tail)
{
while(top1 < mid)
{
new_array[i++] = array[top1++];
flag += tail - (mid) + 1;
}
}
memcpy(&array[head], new_array, sizeof(int) * (tail - head + 1) );
delete new_array;
}
void mergsort(int head, int tail)
{
if(head >= tail)
return ;
mergsort(head, (head + tail) / 2);
mergsort((head + tail) / 2 + 1, tail);
merg(head, tail);
}
int main()
{
int n;
int m;
// freopen("test.txt", "r", stdin);
scanf("%d", &m);
int j;
for(j = 1; j <= m; j++)
{
printf("Scenario #%d:\n", j);
scanf("%d", &n);
int i;
flag = 0;
for(i = 0; i < n; i++)
scanf("%d", &array[i]);
mergsort(0, n - 1);
printf("%lld\n\n", flag);
}
return 0;
}

poj 1804 (nyoj 117)Brainman : 归并排序求逆序数的更多相关文章

  1. poj 2299 Ultra-QuickSort 归并排序求逆序数对

    题目链接: http://poj.org/problem?id=2299 题目描述: 给一个有n(n<=500000)个数的杂乱序列,问:如果用冒泡排序,把这n个数排成升序,需要交换几次? 解题 ...

  2. poj 2299 Ultra-QuickSort :归并排序求逆序数

    点击打开链接 Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 34676   Accepted ...

  3. [CF 351B]Jeff and Furik[归并排序求逆序数]

    题意: 两人游戏, J先走. 给出一个1~n的排列, J选择一对相邻数[题意!!~囧], 交换. F接着走, 扔一硬币, 若正面朝上, 随机选择一对降序排列的相邻数, 交换. 若反面朝上, 随机选择一 ...

  4. POJ2299 Ultra-QuickSort(归并排序求逆序数)

    归并排序求逆序数   Time Limit:7000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descri ...

  5. HDU 3743 Frosh Week(归并排序求逆序数)

    归并排序求逆序数 #include <iostream> #include <cstdio> using namespace std; #define maxn 1000005 ...

  6. hiho一下 第三十九周 归并排序求逆序数

    题目链接:http://hihocoder.com/contest/hiho39/problem/1 ,归并排序求逆序数. 其实这道题也是可以用树状数组来做的,不过数据都比较大,所以要离散化预处理一下 ...

  7. poj 2299 Ultra-QuickSort (归并排序 求逆序数)

    题目:http://poj.org/problem?id=2299 这个题目实际就是求逆序数,注意 long long 上白书上的模板 #include <iostream> #inclu ...

  8. POJ训练计划2299_Ultra-QuickSort(归并排序求逆序数)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 39279   Accepted: 14163 ...

  9. poj 2229 Ultra-QuickSort(树状数组求逆序数)

    题目链接:http://poj.org/problem?id=2299 题目大意:给定n个数,要求这些数构成的逆序对的个数. 可以采用归并排序,也可以使用树状数组 可以把数一个个插入到树状数组中, 每 ...

  10. poj2299解题报告(归并排序求逆序数)

    POJ 2299,题目链接http://poj.org/problem?id=2299 题意: 给出长度为n的序列,每次只能交换相邻的两个元素,问至少要交换几次才使得该序列为递增序列. 思路: 其实就 ...

随机推荐

  1. 在Eclipse中使用JUnit4进行单元测试

    在Eclipse中使用JUnit4进行单元测试(初级篇) 在Eclipse中使用JUnit4进行单元测试(中级篇) 在Eclipse中使用JUnit4进行单元测试(高级篇)

  2. JAVA:借用OpenOffice将上传的Word文档转换成Html格式

    为什么会想起来将上传的word文档转换成html格式呢?设想,如果一个系统需要发布在页面的文章都是来自word文档,一般会执行下面的流程:使用word打开文档,Ctrl+A,进入发布文章页面,Ctrl ...

  3. eclipse luna maven搭建spring mvc

    1. 环境配置 a)         Java 1.7 b)         Eclipse luna c)         Maven3.2.5 d)         Spring 4.1.4 2. ...

  4. 【java】serialVersionUID作用

    serialVersionUID适用于Java的序列化机制.简单来说,Java的序列化机制是通过判断类的serialVersionUID来验证版本一致性的.在进行反序列化时,JVM会把传来的字节流中的 ...

  5. class对象不太明白(待解答)

    如下:定义了一个Servletcontext的Listener,希望获取当前WEB应用的某一个文件对应的输入流 不懂为什么要这样获取?不是可以直接用servletContext.getResource ...

  6. perl中的grep函数介绍

    grep函数 (如果你是个的新手,你可以先跳过下面的两段,直接到 Grep vs.loops 样例这一部分,放心,在后面你还会遇到它) <pre>grep BLOCK LISTgrep E ...

  7. 回到顶部缓动效果代码 --- tween动画函数库

    function animateGoTop() { var top = $(document).scrollTop(); var end = 0; var dur = 500; var t = 0; ...

  8. 黄聪:wordpress伪静态的原理

    首先起作用的是配置文件的.htaccess 中的 RewriteEngine OnRewriteBase /RewriteRule ^index\.php$ - [L]RewriteCond %{RE ...

  9. try catch 怎么写?

    除非必要,否则不在底层写try catch. 比如说,需要在catch里做一些处理,然后再抛出,一般不建议使用try catch掩盖程序出现的异常. try {     BuildQueryComma ...

  10. WindowsForm应用程序调用WebService

    本文原创,如需转载,请标明源地址,谢谢合作!http://blog.csdn.net/sue_1989/article/details/6597078 本文的编写IDE为VSTS2008和.NET F ...