最近由于项目需要在研究spark相关的内容,形成了一些技术性文档,发布这记录下,懒得翻译了。

There are some spaces the official documents didn't explain very clearly, especially on some details. Here are given some more explanations base on the practices  I did  and the source codes I read these days.

(The official document link is http://spark.apache.org/docs/latest/job-scheduling.html)

  1. There are two different schedulers in current spark implementation, FIFO is the default setting and the initial way that spark implement.
  2. Both FIFO and FAIR schedulers can support the basic functionality that multiple parallel jobs run simultaneously, the prerequisite is that they are submitted from separate threads. (i.e., in single thread, the jobs are executed in order)
  3. In FIFO Scheduler, the jobs which are submitted earlier has higher priority and possibility than those later jobs. But it doesn't mean that the first job will execute first, it is also possible that later jobs run before the earlier ones if the resources of the whole cluster are not occupied. However,  the FIFO scheduler will cause the worst case: if the first jobs are large, the later jobs maybe suffer significant delay.
  4. The FAIR Scheduler is the way corresponding to Hadoop FAIR scheduler and enhancement for FIFO. In FIFO fashion, there is only one factor Priority will be considered in SchedulableQueue; While in FAIR fashion, more factors will be considered including minshare, runningtasks, weight (You can reference the code below if interest).Similarly, the jobs don't always run by following the rules by FairSchedulingAlgorithm strictly, while as a whole, the FAIR scheduler really alleviate largely the delay time for small jobs by adjusting the parameters which were delayed significantly in FIFO fashion in my observation through the concurrent JMeter tests。

private[spark] class FIFOSchedulingAlgorithm extends SchedulingAlgorithm {
override def comparator(s1: Schedulable, s2: Schedulable): Boolean = {
val priority1 = s1.priority
val priority2 = s2.priority
var res = math.signum(priority1 - priority2)
if (res == 0) {
val stageId1 = s1.stageId
val stageId2 = s2.stageId
res = math.signum(stageId1 - stageId2)
}
if (res < 0) {
true
} else {
false
}
}
}
private[spark] class FairSchedulingAlgorithm extends SchedulingAlgorithm {
override def comparator(s1: Schedulable, s2: Schedulable): Boolean = {
val minShare1 = s1.minShare
val minShare2 = s2.minShare
val runningTasks1 = s1.runningTasks
val runningTasks2 = s2.runningTasks
val s1Needy = runningTasks1 < minShare1
val s2Needy = runningTasks2 < minShare2
val minShareRatio1 = runningTasks1.toDouble / math.max(minShare1, 1.0).toDouble
val minShareRatio2 = runningTasks2.toDouble / math.max(minShare2, 1.0).toDouble
val taskToWeightRatio1 = runningTasks1.toDouble / s1.weight.toDouble
val taskToWeightRatio2 = runningTasks2.toDouble / s2.weight.toDouble
var compare: Int = 0 if (s1Needy && !s2Needy) {
return true
} else if (!s1Needy && s2Needy) {
return false
} else if (s1Needy && s2Needy) {
compare = minShareRatio1.compareTo(minShareRatio2)
} else {
compare = taskToWeightRatio1.compareTo(taskToWeightRatio2)
} if (compare < 0) {
true
} else if (compare > 0) {
false
} else {
s1.name < s2.name
}
}
 

  5.The pools in FIFO and FAIR schedulers

Spark Job Scheduling的更多相关文章

  1. Spark记录-官网学习配置篇(一)

    参考http://spark.apache.org/docs/latest/configuration.html Spark提供三个位置来配置系统: Spark属性控制大多数应用程序参数,可以使用Sp ...

  2. spark总结——转载

    转载自:    spark总结 第一个Spark程序 /** * 功能:用spark实现的单词计数程序 * 环境:spark 1.6.1, scala 2.10.4 */ // 导入相关类库impor ...

  3. Spark调研笔记第3篇 - Spark集群相应用的调度策略简单介绍

    Spark集群的调度分应用间调度和应用内调度两种情况,下文分别进行说明. 1. 应用间调度 1) 调度策略1: 资源静态分区 资源静态分区是指整个集群的资源被预先划分为多个partitions,资源分 ...

  4. 论文阅读计划1(Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming & An Enforcement of Real Time Scheduling in Spark Streaming & StyleBank: An Explicit Representation for Neural Ima)

    Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming[1] 简介:雅虎发布的一份各种流处理引擎的基准 ...

  5. [Spark] Spark 3.0 Accelerator Aware Scheduling - GPU

    Ref: Spark3.0 preview预览版尝试GPU调用(本地模式不支持GPU) 预览版本:https://archive.apache.org/dist/spark/spark-3.0.0-p ...

  6. spark 笔记 14: spark中的delay scheduling实现

    延迟调度算法的实现是在TaskSetManager类中的,它通过将task存放在四个不同级别的hash表里,当有可用的资源时,resourceOffer函数的参数之一(maxLocality)就是这些 ...

  7. spark 笔记 3:Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling

    spark论文中说他使用了延迟调度算法,源于这篇论文:http://people.csail.mit.edu/matei/papers/2010/eurosys_delay_scheduling.pd ...

  8. Spark分析之Job Scheduling Process

    经过前面文章的SparkContext.DAGScheduler.TaskScheduler分析,再从总体上了解Spark Job的调度流程 1.SparkContext将job的RDD DAG图提交 ...

  9. Spark踩坑记——Spark Streaming+Kafka

    [TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...

随机推荐

  1. SPOJ #11 Factorial

    Counting trailing 0s of n! It is not very hard to figure out how to count it - simply count how many ...

  2. php require和include区别

    require的使用方法如:require("myfile.php"),这个语句通常放在PHP脚本程序的最前面.PHP程序在执行前,就会先读入require()语句所引入的文件,使 ...

  3. Python函数,参数,变量

    func1.py def sayHello(): print ('hello world') sayHello() func_parm.py def printMax(a,b): if a>b: ...

  4. 把docker当做绿色打包工具

    如题,我只是把docker当成绿色版的各种环境的集成打包工具了 用到了docker的--net=host模式,这个暂时在mac下是有问题的,linux下正常使用,具体docker的网络模式参考这里,此 ...

  5. asp.net中Respons.Write()的用法

    很多时候,我们为了是页面的传输速率更高.很自然回去选择脚本和ajax结合进行传值,在传值如要向页面回传数据时,可能只有一次也会是多次.一次的情况下我们可以很好的用Respons.End()方法来截取我 ...

  6. IIS环境下如何批量添加、修改、删除绑定的域名

    IIS环境下如何批量添加和修改所绑定域名 1.关闭IISADMIN服务和W3SVC服务,可以从服务里面关闭,也可以直接执行命令:net stop iisadmin /y: 2.打开“C:\WINDOW ...

  7. [Bug-IOS] - linker command failed with exit code 1 (use -v to see invocation)

    Ld /Users/Rubert/Library/Developer/Xcode/DerivedData/OC_Language-emftyzftyvhdpuaxipddjmpnpvox/Build/ ...

  8. JAVA NIO中selectedKeys返回的键集,对其中的SelectionKey执行操作之后,是否需要在selectedKeys()中对其执行remove 操作

    今天一个东西需要用到java nio的东西.在网上查了一下资料,发现有Apache的Mina,Netty等,感觉JDK中带的NIO有点鸡肋啊.之前看过这部分的内容,但好长一段时间没有用,也就忘得七七八 ...

  9. Python标准库02 时间与日期 (time, datetime包)

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! Python具有良好的时间和日期管理功能.实际上,计算机只会维护一个挂钟时间(wa ...

  10. Valid Number @python

    Valid Number Validate if a given string is numeric. Some examples:"0" => true" 0.1 ...