Before working as an applications engineer, I worked as an IC test development engineer here at TI. One of my projects was to characterize an I2C temperature sensor. After writing some software, I threw together a hand-wired prototype board. I was in a hurry, so I left off that pesky decoupling capacitor. Who needs it, right?

I collected data for about a week, and none of my results matched expectations. I made numerous changes in an attempt to improve performance, but nothing worked. Finally, I decided to add the decoupling capacitor. As you might expect, this solved the issue.

This got me thinking…do we always need decoupling capacitors? What do they really do?

One way to answer the question is to show what happens when you don’t use proper decoupling.

Figure 1 shows a buffer circuit driving an R-C load with and without decoupling capacitors (C1 and C2). Notice that the output signal has a high frequency (3.8MHz) oscillation for the circuit without decoupling. Poor stability, poor transient response, start-up problems, and other anomalies are common challenges with amplifiers that do not have decoupling capacitors.

Figure 1:  Buffer with and without decoupling (measured results)

Figure 2 illustrates why decoupling is important. Note that the inductance of the power supply trace will limit the transient current.

The decoupling capacitor is very close to the device, so it has a very low inductance path for current flow. During transients, the capacitor can supply very large amounts of current to the device for a very short duration.

The device without decoupling does not have a mechanism to provide the transient currents, so the amplifier’s internal nodes will droop – often referred to as a glitch. The internal power supply glitches on the device without decoupling cause inconsistent operation, because the internal nodes are not properly biased.

Figure 2:  Current flow with and without decoupling

In addition to using a decoupling capacitor, you should also use a short low impedance connection between the decoupling capacitor, the power supply, and the ground connection.

Figure 3 compares a good decoupling layout to a bad one. You should always try to keep the decoupling connections short and avoid vias in the decoupling path, because vias add inductance. Most data sheets recommend a decoupling capacitor value. If no recommendation is given, use 0.1uF.

Figure 3:  Good vs. bad PCB layout

Using a properly connected decoupling capacitor can save you a lot of trouble. Even if your circuit works on the bench without decoupling, it could have issues when you go into production from process variation and other real world influences.

Learn from my mistake; don’t fall into the no-decoupling trap!

A special thanks to my colleagues Ichiro Itoi and Tim Green for your insights into decoupling and real-world measured results.

【转】The decoupling capacitor…is it really necessary?的更多相关文章

  1. RFID 仿真/模拟/监控/拦截/检测/嗅探器

    Sound card based RFID sniffer/emulator (Too tired after recon.cx to do draw the schematics better th ...

  2. RFID 读写器 Reader Writer Cloner

    RFID读写器的工作原理 RFID的数据采集以读写器为主导,RFID读写器是一种通过无线通信,实现对标签识别和内存数据的读出和写入操作的装置. 读写器又称为阅读器或读头(Reader).查询器(Int ...

  3. Multi-voltage和power gating的实现

    power domain:一个逻辑的集合体,包含power supply的一些信息.建立在FE. voltage area:chip上的一块物理区域.可以看作power domain的物理实现. Le ...

  4. 旁路、去耦、Bulk以及耦合电容的作用与区别

    在硬件设计中有很多种电容,各种电容的功能.种类和电容容值各不相同.按照功能划分的话,最重要的几种电容分别称为:去耦电容(De-coupling Capacitor),旁路电容(Bypass Capac ...

  5. Make a printer-port EEPROM programmer and dongle

    You can easily use a PC's printer port for serial-EEPROM programming. You can use a device-programme ...

  6. STM32 Hardware Development

    http://www.st.com/web/en/resource/technical/document/application_note/CD00164185.pdf AN2586 http://w ...

  7. 2018.11.16 RX- IC

    1. IC内部组成: Reference Oscillator:基准参考晶振-后续会放大32 倍 Comparator:比较器,输出RF信号 control logic:控制晶振倍频,控制LF,pow ...

  8. 旁路电容的PCB布局布线透彻详解(4)

    原文地址点击这里: 前面使用了较多的篇幅介绍旁路电容的工作原理及其选择依据,我们已经能够为电路系统中相应的数字集成芯片选择合适的旁路电容,在实际应用过程中,旁路电容的PCB布局布线也会影响到高频噪声旁 ...

  9. Capacitor电容

    capacitor无正负极性. cap electrolit有极性,实际中不能接反,否则电容会烧毁或爆炸. MULTISIM仿真中接反会有漏阻存在,但不会烧毁. 电容的分类 按结构可分为:固定电容,可 ...

随机推荐

  1. (栈的应用5.2.2)POJ 2106 Boolean Expressions(表达式求值)

    /* * POJ_2106.cpp * * Created on: 2013年10月30日 * Author: Administrator */ #include <iostream> # ...

  2. COM编程概述

    所谓COM,英文为Componet Object Model,中文为组件对象模型(其实这种解释只有在考试卷上才具有一点实际意义). [1]为什么需要COM? COM是为了解决OLE问题而产生的.COM ...

  3. spring命名空间不需要版本号

    为什么dubbo启动没有问题? 这篇blog源于一个疑问: 我们公司使了阿里的dubbo,但是阿里的开源网站http://code.alibabatech.com,挂掉有好几个月了,为什么我们的应用启 ...

  4. Array JSON

    Tool: Online jsonviewer JSON: JavaScript Object Notation. JSON is a syntax for storing and exchangin ...

  5. jqGrid中选择的行的数据[转]

    如何获取jqGrid中选择的行的数据? 下面可以获取选择一行的id,如果你选择多行,那下面的id是最后选择的行的id: var id=$(‘#gridTable’).jqGrid(‘getGridPa ...

  6. MySQL存储引擎中的MyISAM和InnoDB区别详解

    在使用MySQL的过程中对MyISAM和InnoDB这两个概念存在了些疑问,到底两者引擎有何分别一直是存在我心中的疑问.为了解开这个谜题,搜寻了网络,找到了如下信息: MyISAM是MySQL的默认数 ...

  7. samba服务器源码安装(非rpm)

    首先我们创建一个文档,边安装配置samba,边写教程. 从www.samba.org下载samba最新源码包,我下载的是samba-3.0.7.tar.gz,把它放在我的目录的中/root/lova/ ...

  8. ACM题目————棋盘问题

    Description 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子 ...

  9. 八大排序算法之三选择排序—简单选择排序(Simple Selection Sort)

    基本思想: 在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换:然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素 ...

  10. jdbc连接集合

    JDBC里统一的使用方法:       Class.for(jdbcDriverName);     Connection conn=DriverManager.getConnection(url,u ...