http://poj.org/problem?id=3243

题意:给定X,Z,K,求一个最小的Y满足XY mod Z = K。

关于拓展BSGS的详细解释我写了一篇博文:http://www.cnblogs.com/KonjakJuruo/p/5178600.html


题解:BSGS的拓展版本(因为X和Z不一定互质)。这道题挺坑的,如果K>=Z不是输出无解而是让K%=Z。

算是BSGS的模板题,我打了两种版本,就是二分查找和hash。对比两次提交来看,二分省空间,耗时间;Hash省时间,耗空间。

  另外,find部分可以不用二分,而用hash解决。感觉大部分情况下还是hash比较快,但是比较耗空间。

  把你需要存的数,即x的0~m次方算出来,假设是t,我们设m=1<<16-1,然后用t异或^m得nt(就是取t二进制后的15位进行hash),然后存到hash表里面去。如果t的位置目前没有存数,那么我们就直接存到hash[t]上去,如果t位置已经存了数(因为后15位为t的可能有多种情况),我们就在len除增加一个位置,把nt存到那里面去,然后hash[t].next=len,把位置记录下来,这应该就相当于一条链了。查找的时候循着这条链找下去即可,链的尽头的next用-1标记。

——引用自http://www.cnblogs.com/Konjakmoyu/p/5180458.html

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std; typedef long long LL;
const int N=;
bool bk;
LL X,Z,K,a,b,c,m,k,sum,am,bl;
struct node{
LL d,id;
}bit[N],p[N]; bool cmp(node x,node y){
if(x.d!=y.d) return x.d<y.d;
return x.id<y.id;
} LL gcd(LL u,LL v)
{
if(v==) return u;
return gcd(v,u%v);
} LL find(LL x)
{
int l=,r=bl;
while(l<=r)
{
int mid=(l+r)>>;
if(bit[mid].d==x) return bit[mid].id;
if(bit[mid].d>x) r=mid-;
if(bit[mid].d<x) l=mid+;
}
return -;
} void exgcd(LL u,LL v,LL &x,LL &y)
{
if(v==) {x=,y=;return ;}
LL tx,ty;
exgcd(v,u%v,tx,ty);
x=ty;y=tx-(u/v)*ty;
return;
} LL BSGS()
{
LL t,g,x,y,pm;
a=X;b=K;c=Z;k=;sum=;bk=;bl=;t=%c;
for(int i=;i<=;i++){//避免a的负数次方
if(t==b) return i;
t=t*a%c;
}
while((g=gcd(X,c))!=)
{
k=(k*X/g)%c;//k记得要mod,否则溢出
c/=g;
if(b%g) return -;
b/=g;
sum++;
}
m=(LL)(ceil((double)sqrt((double)c)));//要约分之后再求m
p[].d=k%c;
p[].id=;
pm=;//pm是不用*k的
for(int i=;i<=m;i++)
p[i].d=p[i-].d*a%c,pm=pm*a%c,p[i].id=i;
sort(p,p++m,cmp);
bit[]=p[];bl=;
for(int i=;i<=m;i++)
{
if(p[i].d!=p[i-].d) bit[++bl]=p[i];
}
exgcd(pm,c,x,y);
am=(x%c+c);//避免am=0 t=b;
x=find(b);
if(x!=-) return x;
for(int i=;i<=bl;i++)
{
t*=am;t%=c;
x=find(t);
if(x!=-)
return i*m+x;
}
return -;
} int main()
{
// freopen("a.in","r",stdin);
// freopen("a.out","w",stdout);
while()
{
scanf("%I64d%I64d%I64d",&X,&Z,&K);
if(!X && !Z && !K) return ;
K%=Z;
LL ans=BSGS();
if(ans!=-) printf("%I64d\n",ans+sum);
else printf("No Solution\n");
}
return ;
}

BSGS-二分

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std; typedef long long LL;
const LL N=,Max=(<<)-;
bool bk;
LL X,Z,K,len;
bool vis[];
struct node{
LL d,id,next;
}hash[*Max]; int exgcd(LL a,LL b,LL &x,LL &y)
{
if(b==) {x=,y=;return a;}
LL tx,ty;
LL d=exgcd(b,a%b,tx,ty);
x=ty;y=tx-(a/b)*ty;
return d;
} void ins(LL d,LL id)
{
LL t=d&Max;
if(!vis[t]) {
vis[t]=;
hash[t].d=d,hash[t].id=id,hash[t].next=-;
return ;
}
for(;hash[t].next!=-;t=hash[t].next))//注意是hash[t].next!=-1
{
if(hash[t].d==d) return;
}
hash[t].next=++len;
hash[len].d=d;hash[len].id=id;hash[len].next=-;
} LL find(LL d)
{
LL t=d&Max;
if(!vis[t]) return -;
for(;t!=-;t=hash[t].next)
{
if(hash[t].d==d) return hash[t].id;
}
return -;
} LL BSGS()
{
LL t,g,x,y,pm,a,b,c,m,k,sum,am;
a=X;b=K;c=Z;k=;sum=;t=%c;
for(int i=;i<=;i++){
if(t==b) return i;
t=t*a%c;
}
while((g=exgcd(X,c,x,y))!=)
{
k=(k*X/g)%c;
c/=g;
if(b%g) return -;
b/=g;
sum++;
}
m=(LL)(ceil((double)sqrt((double)c)));
ins(k,);
t=k;pm=;
for(int i=;i<=m;i++)
{
t=t*a%c,pm=pm*a%c;
ins(t,i);
}
exgcd(pm,c,x,y);
am=x%c+c;
t=b;
for(int i=;i<=m;i++)
{
x=find(t);
if(x!=-) return i*m+x+sum;
t=t*am%c;
}
return -;
} int main()
{
// freopen("a.in","r",stdin);
// freopen("b.out","w",stdout);
while()
{
scanf("%I64d%I64d%I64d",&X,&Z,&K);
if(!X && !Z && !K) return ;
K%=Z;len=Max;
memset(vis,,sizeof(vis));
LL ans=BSGS();
if(ans!=-) printf("%I64d\n",ans);
else printf("No Solution\n");
}
return ;
}

BSGS-Hash

【poj3243-Clever Y】高次同余方程-拓展BabyStepGiantStep的更多相关文章

  1. 【数论】【ex-BSGS】poj3243 Clever Y

    用于求解高次同余方程A^x≡B(mod C),其中C不一定是素数. http://blog.csdn.net/tsaid/article/details/7354716 这篇题解写得最好. 那啥,这题 ...

  2. 高次同余方程模板BabyStep-GiantStep

    /************************************* ---高次同余方程模板BabyStep-GiantStep--- 输入:对于方程A^x=B(mod C),调用BabySt ...

  3. poj3243 Clever Y[扩展BSGS]

    Clever Y Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8666   Accepted: 2155 Descript ...

  4. luogu2485 [SDOI2011]计算器 poj3243 Clever Y BSGS算法

    BSGS 算法,即 Baby Step,Giant Step 算法.拔山盖世算法. 计算 \(a^x \equiv b \pmod p\). \(p\)为质数时 特判掉 \(a,p\) 不互质的情况. ...

  5. 【hdu2815-Mod Tree】高次同余方程-拓展BadyStepGaintStep

    http://acm.hdu.edu.cn/showproblem.php?pid=2815 题意:裸题... 关于拓展BSGS的详细解释我写了一篇博文:http://www.cnblogs.com/ ...

  6. POJ 3243 Clever Y(离散对数-拓展小步大步算法)

    Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...

  7. 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

    什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...

  8. [拓展Bsgs] Clever - Y

    题目链接 Clever - Y 题意 有同余方程 \(X^Y \equiv K\ (mod\ Z)\),给定\(X\),\(Z\),\(K\),求\(Y\). 解法 如题,是拓展 \(Bsgs\) 板 ...

  9. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

随机推荐

  1. SQL Server 2008 表变量参数(表值参数)用法

    表值参数是 SQL Server 2008 中的新参数类型.表值参数是使用用户定义的表类型来声明的.使用表值参数,可以不必创建临时表或许多参数,即可向 Transact-SQL 语句或例程(如存储过程 ...

  2. iOS-动态调整UITableViewCell的高度

    OS-动态调整UITableViewCell的高度iOS开发文档, by 友盟翻译组 stefaliu. 大概你第一眼看来,动态调整高度是一件不容易的事情,而且打算解决它的第一个想法往往是不正确的.在 ...

  3. 从零开始学ios开发(四):IOS控件(1),Image View、Text Field、Keyboard

    长话短说,谢谢大家的关注,这篇写了好长时间,下面继续学习ios.我将用2到3篇的篇幅来学习iphone上的一些常用控件,包括Image View.Text Field.Keyboard.Slider等 ...

  4. 28335 sci fifo send

    #include "DSP2833x_Device.h"#include "DSP2833x_Examples.h"char buf[]={0x30,0x32, ...

  5. DNS劫持(网页打不开的解决方法)

    我们上网,必不可少的就是DNS,在这里先介绍下DNS的相关知识. DNS 是域名系统 (Domain NameSystem) 的缩写,它是由解析器和域名服务器组成的.域名服务器是指保存有该网络中所有主 ...

  6. 如何把bootstrap用webpack打包

    今天下载了一个anguarl2写后台,一直没有找到是如何使用bootstrap样式的,然后就全文做了搜索,发现有一段代码 import 'bootstrap-loader'; 这段代码很可疑,所以就查 ...

  7. 桥接模式和NAT模式

    linux的目录结构 配置ip三种 模式 桥接模式 nat模式(VMnet8) 配置网关 DHCP动态分配IP设置 linux的目录结构 配置ip三种 模式 桥接模式 (1) 设置主系统的" ...

  8. Windows python 安装 nNumpy、Scipy、matplotlib模块

    折腾了 很久,总结一些. 首先如果python 是64位,安装32位的numpy ,Scipy,或者matplotlib 模块. 会出现很多问题. 比如当你 在python 导入 Numpy 时,导入 ...

  9. 团队项目(NABC分析)

    我们团队开发的是<校园导航>软件 (1)N(Need需求) 我们的团队主要考虑到我们学校没有自己的校园导航,有时会给同学及参观人员带来不便,又看到好多学校都有自己的导航,所以就从这个需求方 ...

  10. dmucs与distcc

    之前配置distcc没有考虑负载均衡这一项,现在考虑使用dmucs实现distcc的负载均衡 官方手册 http://dmucs.sourceforge.net/ 使用官方手册编译会报错,等解决问题后 ...