LCA问题有多种求法,例如倍增,Tarjan。

本篇博文讲解如何使用Tarjan求LCA。

如果你还不知道什么是LCA,没关系,本文会详细解释。

在本文中,因为我懒为方便理解,使用二叉树进行示范。

LCA是什么,能吃吗?

LCA是树上最近公共祖先问题。

最近公共祖先就是树上有两个结点,找一个结点,是他们的公共祖先,并且离他们两个结点最近。

例如这是一棵树:

树上 4,7 两个结点的 LCA 就是 2 了。

1 虽然也是他们的公共祖先,但并不是最近的。

再举个例子,8,5 的祖先是 5。8,6 的祖先是 1。

怎么求LCA问题?

在开头已经说过了,LCA 问题有多种求法。本文要介绍的是相对简单的 Tarjan 求 LCA。

注意:Tarjan 求 LCA 是一种离线的算法,也就是说它一遍求出所有需要求的点的 LCA,而不是需要求哪两个点再去求。

在开始介绍前的补充

Tarjan 求 LCA 需要用到并查集,以下是本人使用的并查集模板。

int fa[100000];
void reset(){
for (int i=1;i<=100000;i++){
fa[i]=i;
}
}
int getfa(int x){
return fa[x]==x?x:getfa(fa[x]);
}
void marge(int x,int y){
fa[getfa(y)]=getfa(x);
}

由于 Tarjan 是在遍历到目标点的时候得出答案并输出,那么如果你不输出,就需要使用一些东西来记录它(一般不用)。

关于记录

除非你之后需要 LCA 的结果再做一些操作,否则不需要记录,直接在 DFS 中输出即可。

我使用的是 STL 中的 Map 和 Pair,因为 LCA 是求两个点,Pair 正好可以满足一对数据。而 Map 的哈希机制可以实现 O(1) 查找。

Tarjan 求 LCA 做法

总体思想

遍历每一个结点并使用并查集记录父子关系。

Tarjan 是一种 DFS 的思想。我们需要从根结点去遍历这棵树。

当遍历到某一个结点(称之为 x) 时,你有以下几点需要做的。

1将当前结点标记为已经访问。

2递归遍历所有它的子节点(称之为 y),并在递归执行完后用并查集合并 x 和 y。

3遍历与当前节点有查询关系的结点(称之为 z)(即是需要查询 LCA 的另一些结点),如果 z 已经访问,那么 x 与 z 的 LCA 就是 $getfa(z)$(这个是并查集中的查找函数),输出或者记录下来就可以了。

这是伪代码

void tarjan(int x){
//在本代码段中,s[i]为第i个子节点 , t[i]为第i个和当前节点有查询关系的结点。
vis[x]=1;//标记已经访问,vis是记录是否已访问的数组
for (i=1;i<=子节点数;i++){//枚举子节点 (递归并合并)
tarjan(s[i]);
marge(x,s[i]);//并查集合并
}
for (i=1;i<=有查询关系的结点数;i++){
if (vis[t[i]]){
cout<<x<<"和"<<t[i]<<"的LCA是"<<getfa(t[i])<<endl;//如果t[i]已经访问了输出(getfa是并查集查找函数)
}
}
}

核心代码就这么一点?对,就这么一点。

如果你还不理解,那么可以跳转到最后一章看图解演示。

一些重要的细节

为了接下来的讲解,下面我们明确一下读入方式,不同的读入方式可以自己变通一下。

第一行两个数 n 和 q,表示结点数和查询数。

接下来 n 行每行两个数,表示左子结点和右子结点编号,如没有则是 -1。

接下来 q 行每行两个数,表示查询的两个结点编号。

例如上图的树,读入为

9 5
2 3
4 5
-1 6
-1 -1
7 8
-1 9
-1 -1
-1 -1
-1 -1
5 4
7 4
7 8
9 3
8 6

如何存储查询关系

我在这里用的方法是二维数组。

int t[100000][10],top[100000];
//t[i][j]表示编号为i的结点,第j个和它有查询关系的点的编号
//top[i]表示编号为i的结点与它有查询关系的点的数量

  

注意:需要双向存储关系。例如结点 2 和 3,不仅要更新t[2],还要更新t[3]。

读入代码长这样:

for (int i=1;i<=q;i++){
cin>>a[i]>>b[i];
t[a[i]][++top[a[i]]]=b[i];
t[b[i]][++top[b[i]]]=a[i];
}

当然如果你想要优化下空间那么把这个数组变成vector也是没问题的。

这就没了...

代码

直接输出的写法

#include<bits/stdc++.h>
using namespace std;
int n,k,q,v[100000];
map<pair<int,int>,int> ans;//存答案
int t[100000][10],top[100000];//存储查询关系
struct node{
int l,r;
};
node s[100000];
/*并查集*/
int fa[100000];
void reset(){
for (int i=1;i<=n;i++){
fa[i]=i;
}
}
int getfa(int x){
return fa[x]==x?x:getfa(fa[x]);
}
void marge(int x,int y){
fa[getfa(y)]=getfa(x);
}
/*------*/
void tarjan(int x){
v[x]=1;//标记已访问
node p=s[x];//获取当前结点结构体
if (p.l!=-1){
tarjan(p.l);
marge(x,p.l);
}
if (p.r!=-1){
tarjan(p.r);
marge(x,p.r);
}//分别对l和r结点进行操作
for (int i=1;i<=top[x];i++){
if (v[t[x][i]]){
cout<<getfa(t[x][i])<<endl;
}//输出
}
}
int main(){
cin>>n>>q;
for (int i=1;i<=n;i++){
cin>>s[i].l>>s[i].r;
}
for (int i=1;i<=q;i++){
int a,b;
cin>>a>>b;
t[a][++top[a]]=b;//存储查询关系
t[b][++top[b]]=a;
}
reset();//初始化并查集
tarjan(1);//tarjan 求 LCA
}

先记录而不输出的写法

#include<bits/stdc++.h>
using namespace std;
int n,k,q,v[100000];
map<pair<int,int>,int> ans;//存答案
int t[100000][10],top[100000];//存储查询关系
int a[100000],b[100000];
struct node{
int l,r;
};
node s[100000];
/*并查集*/
int fa[100000];
void reset(){
for (int i=1;i<=n;i++){
fa[i]=i;
}
}
int getfa(int x){
return fa[x]==x?x:getfa(fa[x]);
}
void marge(int x,int y){
fa[getfa(y)]=getfa(x);
}
/*------*/
void tarjan(int x){
v[x]=1;
node p=s[x];
if (p.l!=-1){
tarjan(p.l);
marge(x,p.l);
}
if (p.r!=-1){
tarjan(p.r);
marge(x,p.r);
}
for (int i=1;i<=top[x];i++){
if (v[t[x][i]]){
pair<int,int> tmp,tmp1;//用pair配合map来存储答案
tmp=make_pair(x,t[x][i]);
tmp1=make_pair(t[x][i],x);//两个pair的目的是例如3 2这种数据如果搜到3才有答案那么进时的顺序不止是(3,2),还有(2,3),方便输出结果时查询
ans[tmp]=getfa(t[x][i]);
ans[tmp1]=getfa(t[x][i]);
cout<<"#"<<ans[tmp]<<endl;
}
}
}
int main(){
cin>>n>>q;
for (int i=1;i<=n;i++){
cin>>s[i].l>>s[i].r;
}
for (int i=1;i<=q;i++){
cin>>a[i]>>b[i];
t[a[i]][++top[a[i]]]=b[i];
t[b[i]][++top[b[i]]]=a[i];
}
reset();
tarjan(1);
for (int i=1;i<=q;i++){
pair<int,int> tmp;
tmp=make_pair(b[i],a[i]);
cout<<a[i]<<"-"<<b[i]<<":"<<ans[tmp]<<endl;
}
}

算法演示

 

下一步 上一步

详解使用 Tarjan 求 LCA 问题(图解)的更多相关文章

  1. 【Tarjan】洛谷P3379 Tarjan求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  2. 倍增\ tarjan求lca

    对于每个节点v,记录anc[v][k],表示从它向上走2k步后到达的节点(如果越过了根节点,那么anc[v][k]就是根节点). dfs函数对树进行的dfs,先求出anc[v][0],再利用anc[v ...

  3. Tarjan求LCA

    LCA问题算是一类比较经典的树上的问题 做法比较多样 比如说暴力啊,倍增啊等等 今天在这里给大家讲一下tarjan算法! tarjan求LCA是一种稳定高速的算法 时间复杂度能做到预处理O(n + m ...

  4. 倍增 Tarjan 求LCA

                                                                                                         ...

  5. SPOJ 3978 Distance Query(tarjan求LCA)

    The traffic network in a country consists of N cities (labeled with integers from 1 to N) and N-1 ro ...

  6. tarjan求lca的神奇

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  7. Tarjan求LCA(离线)

    基本思想 把要求的点对保存下来,在dfs时顺带求出来. 方法 将每个已经遍历的点指向它回溯的最高节点(遍历它的子树时指向自己),每遍历到一个点就处理它存在的询问如果另一个点已经遍历,则lca就是另一个 ...

  8. 免费的HTML5连载来了《HTML5网页开发实例详解》连载(五)图解通过Fiddler加速开发

    Fiddler是Windows底下最强大的请求代理调试工具,监控任何浏览器的HTTP/HTTPS流量,窜改客户端请求和服务器响应,解密HTTPS Web会话,图4.44为Fiddler原理示意图. 图 ...

  9. 算法详解之Tarjan

    "tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往"----<膜你抄> 一.tarjan求强连通分量 什么是强连通分量? 引用来自 ...

随机推荐

  1. Gym 100463A Crossings (树状数组 逆序对)

    Crossings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100463 Description ...

  2. BZOJ 4540 [Hnoi2016]序列 | 莫队 详细题解

    传送门 BZOJ 4540 题解 --怎么说呢--本来想写线段树+矩阵乘法的-- --但是嘛--yali的机房太热了--困--写不出来-- 于是弃疗,写起了莫队.(但是我连莫队都想不出来!) 首先用单 ...

  3. HGOI 20181103 题解

    problem:把一个可重集分成两个互异的不为空集合,两个集合里面的数相乘的gcd为1(将集合中所有元素的质因数没有交集) solution:显然本题并不是那么容易啊!考场上想了好久.. 其实转化为上 ...

  4. 【uoj3】 NOI2014—魔法森林

    http://uoj.ac/problem/3 (题目链接) 题意 给出一张带权图,每条边有两个权值A和B,一条路径的花费为路径中的最大的A和最大的B之和.求从1走到n的最小花费. Solution ...

  5. CF1027E Inverse Coloring

    题意:n × n的矩阵,每个位置可以被染成黑/白色. 一种gay的染色是任意相邻两行的元素,每两个要么都相同,要么都不同.列同理. 一种gaygay的染色是一种gay的染色,其中没有哪个颜色的子矩阵大 ...

  6. Python基础学习(二)

    前一段时间学习了Python数据类型,语句和函数,目前书写python的新特性,继续练手!!!! 一.切片 之前我们从python的list 或者 tuple中取得元素都是这样写,显然不够灵活 lis ...

  7. 如何获取codeforces的完整数据

    推荐: 如何获取codeforces的完整数据?(玄学方法) http://www.cnblogs.com/Saurus/p/6220513.html

  8. Python基础【day01】:PyChram使用技巧总结(六)

    本节内容 1.添加或者修改文件模板 2. python版本管理切换 3.已有文件重命名4.Python模块安装5.在PyChram中直接浏览文件目录6. 断点调试7.常用快捷键8.PyChram设置字 ...

  9. SHELL (3) —— 变量知识进阶和实践

    摘自:Oldboy Linux运维——SHELL编程实战 SHELL中特殊切重要的变量 位置变量 作用说明 $0 获取当前执行的Shell脚本的文件名,如果执行脚本包含了路径,那么就包括脚本路径 $n ...

  10. 集成maven和Spring boot的profile功能

    思路:maven支持profile功能,当使用maven profile打包时,可以打包指定目录和指定文件,且可以修改文件中的变量.spring boot也支持profile功能,只要在applica ...