ROC,AUC,Precision,Recall,F1的介绍与计算(转)
1. 基本概念
1.1 ROC与AUC
ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve),AUC(Area Under Curve)是ROC曲线下的面积。在计算ROC曲线之前,首先要了解一些基本概念。在二元分类模型的预测结果有四种,以判断人是否有病为例:
- 真阳性(TP):诊断为有,实际上也有病。
- 伪阳性(FP):诊断为有,实际却没有病。
- 真阴性(TN):诊断为没有,实际上也没有病。
- 伪阴性(FN):诊断为没有,实际却有病。
其关系如下图所示:

ROC空间将伪阳性率(FPR)定义为X轴,真阳性率(TPR)定义为Y轴。TPR:在所有实际为阳性的样本中,被正确地判断为阳性之比率,TPR=TPTP+FN 。FPR:在所有实际为阴性的样本中,被错误地判断为阳性之比率,FPR=FPFP+TN。
1.2 Precision、Recall与F1
对于二分类问题另一个常用的评价指标是精确率(precision)与召回率(recall)以及F1值。精确率表示在预测为阳性的样本中,真正有阳性的样本所占的比例。精确率的定义为P=TPTP+FP。召回率表示所有真正呈阳性的样本中,预测为阳性所占的比例。召回率的定义为R=TPTP+FN,F1值是精确率和召回率的调和均值,公式为F1=2PRP+R。精确率和召回率都高时,F1值也会高。通常情况下,Precision与Recall是相互矛盾的。
2. 曲线介绍
2.1 ROC曲线
ROC曲线坐标系如下图所示,虚线为随机猜测的概率,即猜对跟猜错的概率是一样的。理想情况下,我们是希望FPR为0,没有一个假阳性,TPR为1,即全为真阳性,此时所有样本都被正确分类,点位于左上角(0,1)位置处,没有一个分错的数据,这是最完美的情况,实际情况中基本不可能。如果点位于虚线下方,例如C点,说明分类错误的多,分类正确的少,此时不是我们想要的。如果点位于虚线上方,例如C′点,说明分类错误的少,分类正确的多,此时是我们想要的,因此我们希望ROC曲线尽可能的靠近左上角。对于一个特定的分类器和测试数据集,只能得到一个分类结果,即ROC曲线坐标系中的一点,那么如何得到一条ROC曲线呢?分类问题中我们经常会得到某个样本是正样本的概率,根据概率值与阈值的比较来判断某个样本是否是正样本。在不同的阈值下可以得到不同的TPR和FPR值,即可以得到一系列的点,将它们在图中绘制出来,并依次连接起来就得到了ROC曲线,阈值取值越多,ROC曲线越平滑。
AUC为ROC曲线下的面积,它的面积不会大于1,由于ROC曲线一般都处于直线y=x的上方,因此AUC的取值范围通常在(0.5,1)之间。由于ROC曲线不能很好的看出分类器模型的好坏,因此采用AUC值来进行分类器模型的评估与比较。通常AUC值越大,分类器性能越好。

在基本概念中我们提到了精确率、召回率以及F1值,既然有它们作为二分类的评价指标,为什么还要使用ROC和AUC呢?这是因为ROC曲线有个很好的特性:当测试集中的正负样本分布发生变化时,即正负样本数量相差较大时,ROC曲线仍能保持不变。实际数据集中经常会出现样本数量不平衡现象,并且测试数据中的正负样本的分布也可能随着时间发生变化。下图是两个分类器模型(算法)的ROC曲线比较图:

2.2 P-R曲线
在P-R曲线中,Precision为横坐标,Recall为纵坐标。在ROC曲线中曲线越凸向左上角约好,在P-R曲线中,曲线越凸向右上角越好。P-R曲线判断模型的好坏要根据具体情况具体分析,有的项目要求召回率较高、有的项目要求精确率较高。P-R曲线的绘制跟ROC曲线的绘制是一样的,在不同的阈值下得到不同的Precision、Recall,得到一系列的点,将它们在P-R图中绘制出来,并依次连接起来就得到了P-R图。两个分类器模型(算法)P-R曲线比较的一个例子如下图所示:

2.3 ROC与P-R对比
从公式计算中可以看出,ROC曲线中真阳性率TPR的计算公式与P-R曲线中的召回率Recall计算公式是一样的,即二者是同一个东西在不同环境下的不同叫法。当正负样本差距不大的情况下,ROC曲线和P-R的趋势是差不多的,但是当负样本很多的时候,ROC曲线效果依然较好,但是P-R曲线效果一般。
ROC,AUC,Precision,Recall,F1的介绍与计算(转)的更多相关文章
- Precision,Recall,F1的计算
Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...
- 机器学习--如何理解Accuracy, Precision, Recall, F1 score
当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...
- ROC,AUC,Precision,Recall,F1的介绍与计算
1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...
- BERT模型在多类别文本分类时的precision, recall, f1值的计算
BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们 ...
- ROC,AUC,PR,AP介绍及python绘制
这里介绍一下如题所述的四个概念以及相应的使用python绘制曲线: 参考博客:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculat ...
- 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy
针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy 真实结果 1 ...
- TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area,
TP Rate ,FP Rate, Precision, Recall, F-Measure, ROC Area, https://www.zhihu.com/question/30643044 T/ ...
- ROC AUC
1.什么是性能度量? 我们都知道机器学习要建模,但是对于模型性能的好坏(即模型的泛化能力),我们并不知道是怎样的,很可能这个模型就是一个差的模型,泛化能力弱,对测试集不能很好的预测或分类.那么如何知道 ...
- 一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC
参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到).其实,理解它并不是非常难 ...
随机推荐
- .net百度编辑器的使用
1.前端引用 <%@ Page ValidateRequest="false" Language="C#" AutoEventWireup="t ...
- 设置IIS7/IIS7.5的FTP支持断点续传
Windows Server 2003的IIS自带FTP默认支持断点续传,但是Windows Server 2008/R2默认已经不支持,因此需要注意设置,才能让其支持断点续传,更好的利用宝贵的服务器 ...
- 04-spark streaming
1.基本概念(了解) ①流(Streaming): 是一种数据传送技术,它把客户机收到的数据变成一个稳定连续的流,源源不断地送出,使用户听到的声音或看到的图象十分平稳, 而且用户在整个文件送完之前就可 ...
- Hive 2.1.1安装配置
##前期工作 安装JDK 安装Hadoop 安装MySQL ##安装Hive ###下载Hive安装包 可以从 Apache 其中一个镜像站点中下载最新稳定版的 Hive, apache-hive-2 ...
- 【Jmeter自学】Jmeter性能测试(四)
==================================================================================================== ...
- 《机器学习实战》AdaBoost算法(手稿+代码)
Adaboost:多个弱分类器组成一个强分类器,按照每个弱分类器的作用大小给予不同的权重 一.Adaboost理论部分 1.1 adaboost运行过程 注释:算法是利用指数函数降低误差,运行过程通过 ...
- spring揭密学习笔记(2)-spring ioc容器:IOC的基本概念
1. IoC的理念就是,让别人为你服务!2. 其实IoC就这么简单!原来是需要什么东西自己去拿,现在是需要什么东西就让别人送过来.一个生动的示例 3.三种依赖注入的方式 IoC模式最权威的总结和解释, ...
- JavaScript进行简单的随即验证码生成(适合和我一样刚入门一本完整的教材书都没看完的弟弟)
(感谢橙旭园给我打开了前端世界的大门) var checkcode = document.getElementById("code"); var btn = document.ge ...
- NRF51822之使用外部32Mhz晶振
硬件平台为微雪BLE400的(将原来的16mhz晶振改为32mhz.两个旁电容改为22pf) 以nRF51_SDK_10.0.0_dc26b5e\examples\ble_peripheral\ble ...
- Context namespace element 'annotation-config' and its parser class [org.springframework.context.annotation.AnnotationConfigBeanDefinitionParser] are only available on JDK 1.5 and higher
Context namespace element 'annotation-config' and its parser class [org.springframework.context.anno ...