稳定排序nlogn之归并排序_一维,二维
稳定排序nlogn之归并排序_一维,二维
稳定排序:排序时间稳定的排序
稳定排序包括:归并排序(nlogn),基数排序【设待排序列为n个记录,d个关键码,关键码的取值范围为radix,则进行链式基数排序的时间复杂度为O(d(n+radix)) 】,冒泡排序(n^2),插入排序(n^2),交换排序(n^2),计数排序【n为数字个数,k为数字范围,O(n+k)】等。
Problem:对n个数进行排序,n<=100000,1s以内
快速排序平均时间复杂度为nlogn,最坏时间复杂度为n^2。c,c++中的快速排序qsort(c),sort(c++)有优化(如随机化等),基本上达到O(nlogn),但是不是特别稳定。
Solution:
用归并排序,时间复杂度稳定在O(nlogn)。
n=10000 nlogn=132877
n=100000 nlogn=1660964
n=1000000 nlogn=19931568
其中2^10=1024,2^20=1024*1024约为1000000
Code:
一维和二维的区别在于数据类型的不同和比较方式的不同
一维:
#include <stdio.h>
#include <stdlib.h>
#define maxn 100000 long a[maxn+],b[maxn+]; void mergesort(long l,long r)
{
long mid;
mid=(l+r) >> ;
if (l!=mid) mergesort(l,mid);
if (mid+!=r) mergesort(mid+,r);
long i,j,k;
for (i=l;i<=r;i++)
b[i]=a[i];
i=l;
j=mid+;
k=l;
while (i<=mid && j<=r)
{
if (b[i]<b[j])
{
a[k]=b[i];
i++;
k++;
}
else
{
a[k]=b[j];
j++;
k++;
}
}
if (i<=mid)
{
while (i<=mid)
{
a[k]=b[i];
i++;
k++;
}
}
else
{
while (j<=r)
{
a[k]=b[j];
j++;
k++;
}
}
} int main()
{
long n,i;
scanf("%ld",&n);
for (i=;i<=n;i++)
scanf("%ld",&a[i]);
mergesort(,n);
printf("\n");
for (i=;i<=n;i++)
printf("%ld ",a[i]);
printf("\n");
return ;
}
/*
5
4 2 3 5 1
*/
二维:
#include <stdio.h>
#include <stdlib.h>
#define maxn 100000 struct node
{
long x,y;
}; struct node a[maxn+],b[maxn+]; void mergesort(long l,long r)
{
long mid;
mid=(l+r) >> ;
if (l!=mid) mergesort(l,mid);
if (mid+!=r) mergesort(mid+,r);
long i,j,k;
for (i=l;i<=r;i++)
b[i]=a[i];
i=l;
j=mid+;
k=l;
while (i<=mid && j<=r)
{
if (b[i].x<b[j].x || (b[i].x==b[j].x && b[i].y<b[j].y))
{
a[k]=b[i];
i++;
k++;
}
else
{
a[k]=b[j];
j++;
k++;
}
}
if (i<=mid)
{
while (i<=mid)
{
a[k]=b[i];
i++;
k++;
}
}
else
{
while (j<=r)
{
a[k]=b[j];
j++;
k++;
}
}
} int main()
{
long n,i;
scanf("%ld",&n);
for (i=;i<=n;i++)
scanf("%ld%ld",&a[i].x,&a[i].y);
mergesort(,n);
printf("\n");
for (i=;i<=n;i++)
printf("%ld %ld\n",a[i].x,a[i].y);
printf("\n");
return ;
}
/*
5
1 2
5 5
4 4
2 3
2 2
*/
稳定排序nlogn之归并排序_一维,二维的更多相关文章
- 一维二维Sparse Table
写在前面: 记录了个人的学习过程,同时方便复习 Sparse Table 有些情况,需要反复读取某个指定范围内的值而不需要修改 逐个判断区间内的每个值显然太浪费时间 我们希望用空间换取时间 ST表就是 ...
- 基于ZXing.Net生成一维二维码
新阁教育-喜科堂付工原创 最近很多小伙伴对一维码.二维码比较感兴趣,今天主要给大家分享一个C#生成条形码和二维码的案例. C#作为一个高级语言,特点就是快! 我们使用的是开源库ZXing,ZXing是 ...
- c++ 依据输入动态声明数组(一维,二维)
较早的编译器是不同意这样做的,所以一些书籍比方以Tc解说的书本都说数组的下标不能是变量.在vc6.0下亦是如此. 只是在一些较新的编译器如dev c++已经支持了,例如以下代码不会报错 #includ ...
- C# 链表去重 List 一维 二维 分别使用 Distinct() GroupBy() 方法
分别使用List中Distinct(),GroupBy()实现链表的去重. 1.先上效果: 一维链表中分别有元素“aa”,"bb",'aa','aa',"cc" ...
- java 数组基础学习(一维二维数组)
1.一维数组 1>静态初始化:数据类型[ ] 变量名 = {元素} 例:int[ ] arr = {1,2} 动态初始化:数据类型[ ] 变量名 = new数据类型[数据长度] 例:int[ ] ...
- 【VBA】利用Range声明Array(一维/二维)
[说明] B2开始到B?(中间不能有空格),定义一维数组Arr_approver() Dim R_sh As Worksheet Set R_sh = ThisWorkbook.Sheets(&quo ...
- Java中一维,二维数组的静态和动态初始化
今天我们要开始来讲讲Java中的数组,包括一维数组和二维数组的静态初始化和动态初始化 数组概述: 数组可以看成是多个相同类型数据的组合,对这些数据的统一管理; 数组变量属于引用数据类型,数组也可以看成 ...
- matlab学习——05插值和拟合(一维二维插值,拟合)
05插值和拟合 1.一维插值 (1) 机床加工零件,试用分段线性和三次样条两种插值方法计算.并求x=0处的曲线斜率和13<=x<=15范围内y的最小值. x0=[0 3 5 7 9 11 ...
- 树状数组(一维&二维函数)
//一维 void add(int x,int p) { while(x<=n)t[x]+=p,x+=(x&(-x)); } int query(int x) { int ans=0; ...
随机推荐
- C#语法糖yield
代码中经常遇到迭代数据集合的情况,当希望获取到一个IEnumerable<T>类型的集合,而又不想把数据一次性加载到内存中时, 可以考虑使用yield,yield关键字可实现用户的按需获取 ...
- 继承类中static数据值
class A{ static int num = 1; public static void Display(){ System.out.println( num ); } } class B ex ...
- 【ORACLE】重写控制文件
[oracle@rac01 ~]$ sqlplus / as sysdba SQL*Plus: Release 11.2.0.4.0 Production on Thu Mar 15 23:45:02 ...
- ELK安装部署
一.ELK简介 ELK是Elasticsearch.Logstash.Kibana的简称,这三者是核心套件,但并非全部.Elasticsearch是实时全文搜索和分析引擎,提供搜集.分析.存储数据三大 ...
- Jmeter+ant+Jenkins构建接口自动化测试
1.已写好jmeter脚本 2.安装ant并将ant-jmeter-1.1.1.jar文件放入ant/lib目录,用于调用jmeter 3.修改jmeter的jmeter.properties文件(将 ...
- 关于k8s这项大动作,预示着边缘计算迎来“开源”发展的新周期……
在文章<最近在边缘计算领域,发生了一件足以载入物联网史册的大事…>我曾经提到Kubernetes(简称K8s)将从超大规模云计算环境,被带入到物联网边缘计算场景中. 事情有了新进展,从本周 ...
- docker教程——docker镜像打包上传
在开始使用URLOS进行docker应用开发之前,我们先来了解一下docker镜像的打包方法.首先,安装URLOS,安装完成之后,docker也随之安装到了主机里.执行以下命令安装URLOS: cur ...
- npm安装时一些错误
1. npm install 提示no such file or directory 缺少package.json 首先初始化, npm init -f 然后安装依赖 npm install form ...
- Android webview背景设置为透明无效 拖动时背景闪烁黑色
Adndroid 2.X的设置 webview是一个使用方便.功能强大的控件,但由于webview的背景颜色默认是白色,在一些场合下会显得很突兀(比如背景是黑色). 此时就想到了要把webview的背 ...
- 【机器学习】Apriori算法——原理及代码实现(Python版)
Apriopri算法 Apriori算法在数据挖掘中应用较为广泛,常用来挖掘属性与结果之间的相关程度.对于这种寻找数据内部关联关系的做法,我们称之为:关联分析或者关联规则学习.而Apriori算法就是 ...