[hdu5503]EarthCup[霍尔定理]
题意
一共 \(n\) 只球队,两两之间会进行一场比赛,赢得一分输不得分,给出每只球队最后的得分,问能否构造每场比赛的输赢情况使得得分成立。多组数据
\(T\le 10,n\le 5\times 10^4\)
分析
- 容易想到一个网络流的模型:把每场比赛看成点,连向对应的两只队伍。实际上可以把每只队伍的拆成 \(a_i\) 个点就是二分图的模型了。
- 考虑霍尔定理,队伍和队伍之间的区别只在于 \(a\) ,所以考虑枚举队伍数量 \(k\) ,判断最极端的 \(k\) 只队伍即可。\(a\) 最小的 \(k\) 只队伍应满足: \(\frac{k(k-1)}{2}\le \sum\limits_{i=1}^ka_i\),所以排个序判断一下就好了。
- 总时间复杂度 \(O(nlogn)\)
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
const int N = 5e4 + 7;
int n, T;
int a[N];
int main() {
T = gi();
while(T--) {
n = gi();bool fg = 1;LL tot = 0;
rep(i, 1, n) a[i] = gi(), tot += a[i];
if(tot != 1ll * n * (n - 1) / 2) {
puts("The data have been tampered with!");
continue;
}
sort(a + 1, a + 1 + n);
LL sum = 0;
rep(i, 1, n) {
sum += a[i];
if(1ll * i * (i - 1) / 2 > sum) { fg = 0; break;}
}
if(!fg) puts("The data have been tampered with!");
else puts("It seems to have no problem.");
}
return 0;
}
[hdu5503]EarthCup[霍尔定理]的更多相关文章
- 【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)
题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这 ...
- 【题解】 bzoj3693: 圆桌会议 (线段树+霍尔定理)
bzoj3693 Solution: 显然我们可以把人和位置抽象成点,就成了一个二分图,然后就可以用霍尔定理判断是否能有解 一开始我随便YY了一个\(check\)的方法:就是每次向后一组,我们就把那 ...
- 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...
- Codeforces 1009G Allowed Letters FMT,二分图,二分图匹配,霍尔定理
原文链接https://www.cnblogs.com/zhouzhendong/p/CF1009G.html 题目传送门 - CF1009G 题意 给定一个长度为 $n$ 的字符串 $s$ .并给定 ...
- [CF981F]Round Marriage[二分+霍尔定理]
题意 洛谷 分析 参考了Icefox 首先二分,然后考虑霍尔定理判断是否有完美匹配.如果是序列的话,因为这里不会出现 \(j<i,L(i)<L(j)\) 或者 \(j<i,R(i)& ...
- [CF1009G]Allowed Letters[贪心+霍尔定理]
题意 给你一个长为 \(n\) 的串,字符集为 \(a,b,c,d,e,f\) .你可以将整个串打乱之后重新放置,但是某些位置上有一些限制:必须放某个字符集的字符.问字典序最小的串,如果无解输出 &q ...
- [BZOJ3693]圆桌会议[霍尔定理+线段树]
题意 题目链接 分析 又是一个二分图匹配的问题,考虑霍尔定理. 根据套路我们知道只需要检查 "区间的并是一段连续的区间" 这些子集. 首先将环倍长.考虑枚举答案的区间并的右端点 \ ...
- [BZOJ2138]stone[霍尔定理+线段树]
题意 一共有 \(n\) 堆石子,每堆石子有一个数量 \(a\) ,你要进行 \(m\) 次操作,每次操作你可以在满足前 \(i-1\) 次操作的回答的基础上选择在 \([L_i,R_i]\) 区间中 ...
- [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]
题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...
随机推荐
- Nlog.Config:日志方法步骤
首先添加negut包Nlog.Config: 安装完毕以后,可以替换Nlog.config <?xml version="1.0" encoding="utf-8& ...
- ngrep命令用法
ngrep 是grep(在文本中搜索字符串的工具)的网络版,他力求更多的grep特征,用于搜寻指定的数据包.正由于安装ngrep需用到libpcap库, 所以支持大量的操作系统和网络协议.能识别TCP ...
- innodb_locks_unsafe_for_binlog分析
mysql数据库中默认的隔离级别为repeat-read. innodb默认使用了next-gap算法,这种算法结合了index-row锁和gap锁.正因为这样的锁算法,innodb在可重复读这样的默 ...
- linux 静态地址配置选项
最近使用静态地址配置linux, 配置的时候突然不知道配置选项具体内容了,这里面记录一下配置:适用于 ipv4 网络 [root@dhcp-- ~]# cat /etc/sysconfig/netwo ...
- rename 批量修改文件名简单用法
有的时候我们需要批量创建文件做测试,为了做区分,一般只要稍稍动动文件名即可,MV命令既可以移动文件,也是可以修改文件名的,但批量修改文件名MV做不到,此时,我们可以用rename命令批量修改是蛮不错的 ...
- 【转】Java学习---volatile 关键字
[原文]https://www.toutiao.com/i6591422029323305480/ 前言 不管是在面试还是实际开发中 volatile 都是一个应该掌握的技能. 首先来看看为什么会出现 ...
- 安全之路 —— C/C++开3389端口(远程终端)
简介 在渗透测试中开启对方电脑的3389端口是入侵者加入对方计算机账户后要想直接控制对方计算机的必须步骤,即开启对方计算机的远程终端功能,不同的Windows系统要开启3389需要修改不同的注册表项, ...
- php 微信公众号接入支付宝支付
真是无力吐槽这个需求了,好端端的非要在微信公众号接入支付宝,都知道微信公众号是拒绝支付宝的,屏蔽了支付宝,所以在微信公众号接入支付宝的话就必须手动复制链接跳出微信内置浏览器,强制性打开web浏览器完成 ...
- 微信jsapi退款操作
引自网络“ 前期准备:当然是搞定了微信支付,不然怎么退款,这次还是使用官方的demo.当然网上可能也有很多大神自己重写和封装了demo,或许更加好用简洁,但是我还是不提倡用,原因如下:(1)可能功能不 ...
- 第三方git pull免密码更新
方法一: git pull http://账号:密码@服务器地址/xxx/xxx.git master:master 方法二: 或者使用ssh免密码,生成的pub公钥内容拷贝的auth文件里面,同时添 ...