51nod 1584加权约数和
学到了好多东西啊这题。。。
https://blog.csdn.net/sdfzyhx/article/details/72968468
#include<bits/stdc++.h>
using namespace std;
const int N=1e6+,mod=1e9+;
typedef long long ll;
ll miu[N],v[N],p[N],cnt,sum1[N],sum2[N],mi1[N],mi2[N],h[N],g[N],f[N],T,n;
ll inc(ll a,ll b)
{
a=a+b;
if(a>mod)a%=mod;
return a;
}
ll dec(ll a,ll b)
{
a=a-b;
if(a<)a+=mod;
return a%mod;
}
ll qmod(ll x,ll y)
{
int ans=;
while(y)
{
if(y&)ans=1ll*ans*x%mod;
x=1ll*x*x%mod;y>>=;
}
return ans;
}
void init()
{
miu[]=sum1[]=sum2[]=mi1[]=mi2[]=;
for(int i=;i<=1e6;++i)
{
if(!v[i])
{
p[++cnt]=i;
miu[i]=-;
sum1[i]=i+;
sum2[i]=inc(1ll*i*i%mod+i,);
mi1[i]=mi2[i]=i;
}
for(int j=;j<=cnt&&i*p[j]<=1e6;++j)
{
int x=i*p[j];v[x]=;
if(i%p[j])
{
mi1[x]=mi2[x]=p[j];
miu[x]=-miu[i];
sum1[x]=1ll*sum1[i]*sum1[p[j]]%mod;
sum2[x]=1ll*sum2[i]*sum2[p[j]]%mod;
}
else
{
mi1[x]=p[j];
mi2[x]=1ll*mi2[i]*p[j]%mod;
sum1[x]=inc(sum1[i],1ll*p[j]*mi2[i]%mod*sum1[i/mi2[i]]%mod);//求约数和
sum2[x]=inc(sum2[i],1ll*inc(1ll*mi2[i]*mi2[i]%mod*mi1[i]%mod,1ll*mi2[i]*mi2[i]%mod*mi1[i]%mod*mi1[i]%mod)*sum2[i/mi2[i]]%mod);//求平方约数和
break;
}
}
}
for(int i=;i<=1e6;++i)
{
h[i]=inc(h[i-],sum1[i]);
g[i]=1ll*i*sum1[i]%mod*h[i]%mod;
sum2[i]=1ll*sum2[i]*i%mod;
sum2[i]=inc(sum2[i],sum2[i-]);
}
for(int i=;i<=1e6;++i)
{ for(int j=i,k=;j<=1e6;j+=i,k++)
f[j]=inc(f[j],1ll*miu[i]%mod*i%mod*i%mod*g[k]%mod);
f[i]=inc(f[i],f[i-]);
}
return;
}
int main()
{
init();scanf("%d",&T);
for(int i=;i<=T;++i)
{
scanf("%d",&n);
printf("Case #%d: %lld\n",i,(dec(2ll*f[n]%mod,sum2[n])+mod)%mod);
}
return ;
}
51nod 1584加权约数和的更多相关文章
- 51NOD 1584 加权约数和 [莫比乌斯反演 转化 Trick]
1584 加权约数和 题意:求\(\sum_{i=1}^{N} \sum_{j=1}^{N} {\max(i,j)\cdot \sigma(i\cdot j)}\) 多组数据\(n \le 10^6, ...
- 51nod 1584 加权约数和 约数和函数小trick 莫比乌斯反演
LINK:加权约数和 我曾经一度认为莫比乌斯反演都是板子题. 做过这道题我认输了 不是什么东西都是板子. 一个trick 设\(s(x)\)为x的约数和函数. 有 \(s(i\cdot j)=\sum ...
- [51Nod 1584] 加权约数和
Description 在整理以前的试题时,他发现了这样一道题目:"求 \(\sum\sigma(i)\),其中 \(1≤i≤N\),\(σ(i)\) 表示 \(i\) 的约数之和.&quo ...
- [51 Nod 1584] 加权约数和
题意 求∑i=1N∑j=1Nmax(i,j)⋅σ1(ij)\large \sum_{i=1}^N\sum_{j=1}^Nmax(i,j)\cdot\sigma_1(ij)i=1∑Nj=1∑Nmax ...
- 【51Nod1584】加权约数和(数论)
[51Nod1584]加权约数和(数论) 题面 51Nod 题解 要求的是\[\sum_{i=1}^n\sum_{j=1}^n max(i,j)\sigma(ij)\] 这个\(max\)太讨厌了,直 ...
- Solution -「51nod 1584」加权约数和
\(\mathcal{Description}\) Link. 令 \(\sigma(n)\) 为 \(n\) 的约数之和.求: \[\sum_{i=1}^n\sum_{j=1}^n\max\ ...
- 51Nod1584 加权约数和
这题其实就是反演一波就好了(那你还推了一下午+一晚上),不过第一次碰到\(O(n\log n)\)预处理分块和式的方法-- 不知为啥我跟唐教主的题解推的式子不太一样--(虽然本质上可能是相同的吧) 那 ...
- 51nod1584加权约数和
题目大意: 求: \[ \sum_{i-1}^n\sum_{j=1}^nmax(i,j)\sigma(i*j) \] 题解 对于这个\(\max\),套路的把它转化成: \[ 2*\sum_{i=1} ...
- Note -「Mobius 反演」光速入门
目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...
随机推荐
- python爬虫 抓取一个网站的所有网址链接
sklearn实战-乳腺癌细胞数据挖掘 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campai ...
- Kafka 0.8翻译官网精华.md
1主要的设计元素 Kafka之所以和其它绝大多数信息系统不同,是因为下面这几个为数不多的比较重要的设计决策: Kafka在设计之时为就将持久化消息作为通常的使用情况进行了考虑. 主要的设计约束是吞吐量 ...
- vue 获取后端数据打印结果undefined问题
今天做项目时后端有一个要展示到页面上的附件需要前端获取,我获取到了那个附件的信息,但打印fj.name或fj.url时控制台就会显示undefined,后来才发现是json数据没有解析对,应该使用JS ...
- 对 JavaScript 下 namespace 功能的简单分析
前些天在剥离 百度随心听 的播放器引擎时,看到了一个namespace方法,觉得新奇,当然只是对于我自己而言,我入门js不久,经验尚浅.之前看到网易还是新浪还是什么什么网站来着,也是用类似这种东西的, ...
- C根据排序字符串
#include<stdio.h> #include<string.h> #include <stdlib.h> #define STR_LEN_MAX 100 c ...
- Unable to Distribute in Xcode5?
Blog Unable to Distribute in Xcode5? I have the question, if this screenshot is what you getting. ( ...
- JavaScript 计时
http://www.w3school.com.cn/js/js_timing.asp JavaScript 计时事件 通过使用 JavaScript,我们有能力作到在一个设定的时间间隔之后来执行代码 ...
- supperset (python 2.7.12 + mysql)记录
网上看到superset,比较感兴趣,虚机上搭一下,记录操作过程. 版本信息:CentOS 6.6 + python 2.7.12 + mysql 5.1.73 + setuptools 36.5.0 ...
- 基于Window10搭建android开发环境
一.安装JDK 1.下载(网页链接) 2.双击安装文件进行安装,安装在合适目录,例如:D:\Java\jdk1.8.0_201与D:\Java\jre1.8.0_201 3.设置环境变量 3.1.JA ...
- Linux6.5 安装Python3.X(转载)
1.获取Python 3.6.3 通过官网https://www.python.org/downloads/下载Python 3.4.3源码: 源码获取命令如下:wget https://www.py ...