学到了好多东西啊这题。。。

https://blog.csdn.net/sdfzyhx/article/details/72968468

 #include<bits/stdc++.h>
using namespace std;
const int N=1e6+,mod=1e9+;
typedef long long ll;
ll miu[N],v[N],p[N],cnt,sum1[N],sum2[N],mi1[N],mi2[N],h[N],g[N],f[N],T,n;
ll inc(ll a,ll b)
{
a=a+b;
if(a>mod)a%=mod;
return a;
}
ll dec(ll a,ll b)
{
a=a-b;
if(a<)a+=mod;
return a%mod;
}
ll qmod(ll x,ll y)
{
int ans=;
while(y)
{
if(y&)ans=1ll*ans*x%mod;
x=1ll*x*x%mod;y>>=;
}
return ans;
}
void init()
{
miu[]=sum1[]=sum2[]=mi1[]=mi2[]=;
for(int i=;i<=1e6;++i)
{
if(!v[i])
{
p[++cnt]=i;
miu[i]=-;
sum1[i]=i+;
sum2[i]=inc(1ll*i*i%mod+i,);
mi1[i]=mi2[i]=i;
}
for(int j=;j<=cnt&&i*p[j]<=1e6;++j)
{
int x=i*p[j];v[x]=;
if(i%p[j])
{
mi1[x]=mi2[x]=p[j];
miu[x]=-miu[i];
sum1[x]=1ll*sum1[i]*sum1[p[j]]%mod;
sum2[x]=1ll*sum2[i]*sum2[p[j]]%mod;
}
else
{
mi1[x]=p[j];
mi2[x]=1ll*mi2[i]*p[j]%mod;
sum1[x]=inc(sum1[i],1ll*p[j]*mi2[i]%mod*sum1[i/mi2[i]]%mod);//求约数和
sum2[x]=inc(sum2[i],1ll*inc(1ll*mi2[i]*mi2[i]%mod*mi1[i]%mod,1ll*mi2[i]*mi2[i]%mod*mi1[i]%mod*mi1[i]%mod)*sum2[i/mi2[i]]%mod);//求平方约数和
break;
}
}
}
for(int i=;i<=1e6;++i)
{
h[i]=inc(h[i-],sum1[i]);
g[i]=1ll*i*sum1[i]%mod*h[i]%mod;
sum2[i]=1ll*sum2[i]*i%mod;
sum2[i]=inc(sum2[i],sum2[i-]);
}
for(int i=;i<=1e6;++i)
{ for(int j=i,k=;j<=1e6;j+=i,k++)
f[j]=inc(f[j],1ll*miu[i]%mod*i%mod*i%mod*g[k]%mod);
f[i]=inc(f[i],f[i-]);
}
return;
}
int main()
{
init();scanf("%d",&T);
for(int i=;i<=T;++i)
{
scanf("%d",&n);
printf("Case #%d: %lld\n",i,(dec(2ll*f[n]%mod,sum2[n])+mod)%mod);
}
return ;
}

51nod 1584加权约数和的更多相关文章

  1. 51NOD 1584 加权约数和 [莫比乌斯反演 转化 Trick]

    1584 加权约数和 题意:求\(\sum_{i=1}^{N} \sum_{j=1}^{N} {\max(i,j)\cdot \sigma(i\cdot j)}\) 多组数据\(n \le 10^6, ...

  2. 51nod 1584 加权约数和 约数和函数小trick 莫比乌斯反演

    LINK:加权约数和 我曾经一度认为莫比乌斯反演都是板子题. 做过这道题我认输了 不是什么东西都是板子. 一个trick 设\(s(x)\)为x的约数和函数. 有 \(s(i\cdot j)=\sum ...

  3. [51Nod 1584] 加权约数和

    Description 在整理以前的试题时,他发现了这样一道题目:"求 \(\sum\sigma(i)\),其中 \(1≤i≤N\),\(σ(i)\) 表示 \(i\) 的约数之和.&quo ...

  4. [51 Nod 1584] 加权约数和

    题意 求∑i=1N∑j=1Nmax(i,j)⋅σ1(ij)\large \sum_{i=1}^N\sum_{j=1}^Nmax(i,j)\cdot\sigma_1(ij)i=1∑N​j=1∑N​max ...

  5. 【51Nod1584】加权约数和(数论)

    [51Nod1584]加权约数和(数论) 题面 51Nod 题解 要求的是\[\sum_{i=1}^n\sum_{j=1}^n max(i,j)\sigma(ij)\] 这个\(max\)太讨厌了,直 ...

  6. Solution -「51nod 1584」加权约数和

    \(\mathcal{Description}\)   Link.   令 \(\sigma(n)\) 为 \(n\) 的约数之和.求: \[\sum_{i=1}^n\sum_{j=1}^n\max\ ...

  7. 51Nod1584 加权约数和

    这题其实就是反演一波就好了(那你还推了一下午+一晚上),不过第一次碰到\(O(n\log n)\)预处理分块和式的方法-- 不知为啥我跟唐教主的题解推的式子不太一样--(虽然本质上可能是相同的吧) 那 ...

  8. 51nod1584加权约数和

    题目大意: 求: \[ \sum_{i-1}^n\sum_{j=1}^nmax(i,j)\sigma(i*j) \] 题解 对于这个\(\max\),套路的把它转化成: \[ 2*\sum_{i=1} ...

  9. Note -「Mobius 反演」光速入门

    目录 Preface 数论函数 积性函数 Dirichlet 卷积 Dirichlet 卷积中的特殊函数 Mobius 函数 & Mobius 反演 Mobius 函数 Mobius 反演 基 ...

随机推荐

  1. 安装Python和Anaconda

    安装Python和Anaconda 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.安装anaconda anaconda包括了Python的集成开发环境. 1.打开下载的网站 ...

  2. 数据结构(三)串---KMP模式匹配算法之获取next数组

    (一)获取模式串T的next数组值 1.回顾 我们所知道的KMP算法next数组的作用 next[j]表示当前模式串T的j下标对目标串S的i值失配时,我们应该使用模式串的下标为next[j]接着去和目 ...

  3. Spark记录-实例和运行在Yarn

    #运行实例 #./bin/run-example SparkPi 10   #./bin/spark-shell --master local[2] #./bin/pyspark --master l ...

  4. 第5月第21天 bugly ios证书位置

    1.bugly 一. 本地测试 补丁编写规则参见: JSPatch 将补丁文件main.js拖拽到工程内: 开启 BuglyConfig 中的热更新本地调试模式: BuglyConfig *confi ...

  5. HTML+CSS写下拉菜单

    今天学习了使用HTML+CSS实现下拉菜单效果,在这个例子中,我学到了如下知识点: 设置背景图片(background-image.background-size) 如何让无序列表横向显示(float ...

  6. vb 中recordset提示对象关闭时不允许操作

    vb中执行查询后,一般要判断是否为空,只要执行的查询执行了select,都可以用rs.eof 或者 rs.recordcount来判断, 但是,如果执行的sql中加了逻辑判断,导致没有执行任何sele ...

  7. CVTE笔试题

    一.题目 给定一个数组a[N],我们希望构造数组b [N],其中b[j]=a[0]*a[1]…a[N-1] / a[j],在构造过程中,不允许使用除法: 要求O(1)空间复杂度和O(n)的时间复杂度: ...

  8. 在Windows环境中利用Responder工具窃取NTLMv2哈希

    在Windows环境中利用Responder工具窃取NTLMv2哈希 翻译自:https://github.com/incredibleindishell/Windows-AD-environment ...

  9. cas:覆盖安装

    1.首先到github上下载最新的模板代码 https://github.com/apereo/cas-overlay-template 下载完成后,导入该工程. 2.编译打包 cd cas-over ...

  10. IDEA 2017的插件mybatis plugin

    https://my.oschina.net/u/3209432/blog/1584110 idea2017,用上面的方法安装mybatis plugin