转自https://blog.csdn.net/u014114990/article/details/50767786

从NIN 到Googlenet mrsa net 都是用了这个,为什么呢

发现很多网络使用了1X1卷积核,这能起到什么作用呢?另外我一直觉得,1X1卷积核就是对输入的一个比例缩放,因为1X1卷积核只有一个参数,这个核在输入上滑动,就相当于给输入数据乘以一个系数。不知道我理解的是否正确。
我来说说我的理解,我认为1×1的卷积大概有两个方面的作用吧:
1. 实现跨通道的交互和信息整合
2. 进行卷积核通道数的降维和升维
 
下面详细解释一下:
1. 这一点孙琳钧童鞋讲的很清楚。1×1的卷积层(可能)引起人们的重视是在NIN的结构中,论文中林敏师兄的想法是利用MLP代替传统的线性卷积核,从而提高网络的表达能力。文中同时利用了跨通道pooling的角度解释,认为文中提出的MLP其实等价于在传统卷积核后面接cccp层,从而实现多个feature
map的线性组合,实现跨通道的信息整合。而cccp层是等价于1×1卷积的,因此细看NIN的caffe实现,就是在每个传统卷积层后面接了两个cccp层(其实就是接了两个1×1的卷积层)。
2. 进行降维和升维引起人们重视的(可能)是在GoogLeNet里。对于每一个Inception模块(如下图),原始模块是左图,右图中是加入了1×1卷积进行降维的。虽然左图的卷积核都比较小,但是当输入和输出的通道数很大时,乘起来也会使得卷积核参数变的很大,而右图加入1×1卷积后可以降低输入的通道数,卷积核参数、运算复杂度也就跟着降下来了。以GoogLeNet的3a模块为例,输入的feature
map是28×28×192,3a模块中1×1卷积通道为64,3×3卷积通道为128,5×5卷积通道为32,如果是左图结构,那么卷积核参数为1×1×192×64+3×3×192×128+5×5×192×32,而右图对3×3和5×5卷积层前分别加入了通道数为96和16的1×1卷积层,这样卷积核参数就变成了1×1×192×64+(1×1×192×96+3×3×96×128)+(1×1×192×16+5×5×16×32),参数大约减少到原来的三分之一。同时在并行pooling层后面加入1×1卷积层后也可以降低输出的feature
map数量,左图pooling后feature map是不变的,再加卷积层得到的feature map,会使输出的feature map扩大到416,如果每个模块都这样,网络的输出会越来越大。而右图在pooling后面加了通道为32的1×1卷积,使得输出的feature map数降到了256。GoogLeNet利用1×1的卷积降维后,得到了更为紧凑的网络结构,虽然总共有22层,但是参数数量却只是8层的AlexNet的十二分之一(当然也有很大一部分原因是去掉了全连接层)。

最近大热的MSRA的ResNet同样也利用了1×1卷积,并且是在3×3卷积层的前后都使用了,不仅进行了降维,还进行了升维,使得卷积层的输入和输出的通道数都减小,参数数量进一步减少,如下图的结构。(不然真不敢想象152层的网络要怎么跑起来TAT)

 

对于单通道的feature
map和单个卷积核之间的卷积来说,题主的理解是对的,CNN里的卷积大都是多通道的feature map和多通道的卷积核之间的操作(输入的多通道的feature map和一组卷积核做卷积求和得到一个输出的feature map),如果使用1x1的卷积核,这个操作实现的就是多个feature map的线性组合,可以实现feature map在通道个数上的变化。接在普通的卷积层的后面,配合激活函数,就可以实现network in network的结构了

 
还有一个重要的功能,就是可以在保持feature
map 尺寸不变(即不损失分辨率)的前提下大幅增加非线性特性,把网络做得很deep。
 
 

2 一些神经网络中会提到ImageNet Top-5 或者Top-1,这是一种图片检测准确率的标准,介绍这个之前,先介绍一下ImageNet。

【ImageNet】

ImageNet 项目是一个用于物体对象识别检索大型视觉数据库。截止2016年,ImageNet 已经对超过一千万个图像进行手动注释,标记图像的类别。在至少一百万张图像中还提供了边界框。

自2010年以来,ImageNet 举办一年一度的软件竞赛,叫做(ImageNet Large Scale Visual Recognition Challenge,ILSVRC)。主要内容是通过算法程序实现正确分类和探测识别物体与场景,评价标准就是Top-5 错误率。

Top-5错误率

即对一个图片,如果概率前五中包含正确答案,即认为正确。

Top-1错误率

即对一个图片,如果概率最大的是正确答案,才认为正确。

CNN 中, 1X1卷积核到底有什么作用的更多相关文章

  1. CNN中,1X1卷积核到底有什么作用呢?

    CNN中,1X1卷积核到底有什么作用呢? https://www.jianshu.com/p/ba51f8c6e348 Question: 从NIN 到Googlenet mrsa net 都是用了这 ...

  2. 【深度学习】CNN 中 1x1 卷积核的作用

    [深度学习]CNN 中 1x1 卷积核的作用 最近研究 GoogLeNet 和 VGG 神经网络结构的时候,都看见了它们在某些层有采取 1x1 作为卷积核,起初的时候,对这个做法很是迷惑,这是因为之前 ...

  3. CNN中的卷积核及TensorFlow中卷积的各种实现

    声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...

  4. CNN中1x1 卷积的处理过程及作用

    参看:https://blog.csdn.net/ybdesire/article/details/80314925

  5. (原)CNN中的卷积、1x1卷积及在pytorch中的验证

    转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn ...

  6. CNN中各类卷积总结:残差、shuffle、空洞卷积、变形卷积核、可分离卷积等

    CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中 ...

  7. CNN中feature map、卷积核、卷积核的个数、filter、channel的概念解释

    CNN中feature map.卷积核.卷积核的个数.filter.channel的概念解释 参考链接: https://blog.csdn.net/xys430381_1/article/detai ...

  8. 1x1卷积核作用

    1. 实现跨通道的交互和信息整合 对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量! 对多通道图像做1x1卷积,其实就是将输入图像于每个通道乘以卷积系数后加在一起,即相当于把 ...

  9. 由浅入深:CNN中卷积层与转置卷积层的关系

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷 ...

随机推荐

  1. Kubernetes学习之路目录

    Kubernetes基础篇 环境说明 版本说明 系统环境 Centos 7.2 Kubernetes版本 v1.11.2 Docker版本 v18.09 Kubernetes学习之路(一)之概念和架构 ...

  2. 【第十课】Tomcat入门

    目录 1.Tomcat介绍 2.Tomcat安装部署和配置 (1)tomcat下载和解压 (2)jdk环境变量配置 (3)设置tomcat以普通用户启动 (4)查看tomcat的配置 (5)tomca ...

  3. C++学习之从C到C++

    头文件的包含 包含头文件可以不加.h结尾,如iostream,一些常用的头文件在引用时可以不加.h后缀,并在开头增加c,如: #include <cstdio> #include < ...

  4. Spring MVC统一异常处理

    实际上Spring MVC处理异常有3种方式: (1)一种是在Controller类内部使用@ExceptionHandler使用注解实现异常处理: 可以在Controller内部实现更个性化点异常处 ...

  5. 未能使用“Csc”任务的输入参数初始化该任务

    今天.NetCore2.1版本,建立Asp.net Core web应用程序项目时,报以下错误: 未能使用“Csc”任务的输入参数初始化该任务. “Csc”任务不支持“SharedCompilatio ...

  6. 基于.NET Standard的分布式自增ID算法--Snowflake代码实现

    概述 上篇文章介绍了3种常见的Id生成算法,本篇主要介绍如何使用C#实现Snowflake. 基础字段 /// <summary> /// 工作节点Id(长度为5位) /// </s ...

  7. Java关键字 Finally执行与break, continue, return等关键字的关系

    长文短总结: 在程序没有在执行到finally之前异常退出的情况下,finally是一定执行的,即在finally之前的return语句将在finally执行之后执行. finally总是在控制转移语 ...

  8. Linux+Nginx+Asp.net Core及守护进程部署

    上篇<Docker基础入门及示例>文章介绍了Docker部署,以及相关.net core 的打包示例.这篇文章我将以oss.offical.site站点为例,主要介绍下在linux机器下完 ...

  9. Jq_select的操作

    jQuery获取Select选择的Text和Value: 语法解释: $("#select_id").change(function(){//code...}); //为Selec ...

  10. GitHub 新手教程 七,Git GUI 新手教程(4),上传本地代码库到GitHub

    1,打开 GitGUI,单击我们之前克隆好的本地库: 2,按图示顺序点击按钮: 3,按图示顺序点击按钮,输入您的 Sign 信息: 4,按图示顺序点击按钮: 5,弹出新的窗口后,点击 “Push” 按 ...