StanFord ML 笔记 第三部分
第三部分:
1.指数分布族
2.高斯分布--->>>最小二乘法
3.泊松分布--->>>线性回归
4.Softmax回归
指数分布族:
结合Ng的课程,在看这篇博文:http://blog.csdn.net/acdreamers/article/details/44663091
泊松分布:
这里是一个扩展,看不看都可以:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html
Softmax回归:
有点难度的,看了3个多小时才看懂。自己就不重复造轮子了,以下是在原文的基础上做的笔记,直接看真的很懵逼!
简介:
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签
可以取两个以上的值。 Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字。Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合。
回想一下在 logistic 回归中,我们的训练集由
个已标记的样本构成:
,其中输入特征
。(我们对符号的约定如下:特征向量
的维度为
,其中
对应截距项 。) 由于 logistic 回归是针对二分类问题的,因此类标记
。假设函数(hypothesis function) 如下:
注释:这是已经利用泊松分布概率推到的函数。

我们将训练模型参数
,使其能够最小化代价函数 :
注释:代价函数在这里的理解就是所有样本概率求和函数。

在 softmax回归中,我们解决的是多分类问题(相对于 logistic 回归解决的二分类问题),类标
可以取
个不同的值(而不是 2 个)。因此,对于训练集
,我们有
。(注意此处的类别下标从 1 开始,而不是 0)。例如,在 MNIST 数字识别任务中,我们有
个不同的类别。
对于给定的测试输入
,我们想用假设函数针对每一个类别j估算出概率值
。也就是说,我们想估计
的每一种分类结果出现的概率。因此,我们的假设函数将要输出一个
维的向量(向量元素的和为1)来表示这
个估计的概率值。 具体地说,我们的假设函数
形式如下:
注释:此图是对下面表达式的说明。


其中
是模型的参数。请注意
这一项对概率分布进行归一化,使得所有概率之和为 1 。
为了方便起见,我们同样使用符号
来表示全部的模型参数。在实现Softmax回归时,将
用一个
的矩阵来表示会很方便,该矩阵是将
按行罗列起来得到的,如下所示:
注释:每个thea都是n行向量,前面求解回归方程已经说明。

代价函数:
现在我们来介绍 softmax 回归算法的代价函数。在下面的公式中,
是示性函数,其取值规则为:
注释:这里是个判断函数,在数学表达式中很少,但是程序直接写 print_value = a==b ? 1 : 0;
1{值为真的表达式 }=1,
值为假的表达式
。
举例来说,表达式
的值为1 ,
的值为 0。我们的代价函数为:

值得注意的是,上述公式是logistic回归代价函数的推广。logistic回归代价函数可以改为:

可以看到,Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的
个可能值进行了累加。注意在Softmax回归中将
分类为类别
的概率为:
对于
的最小化问题,目前还没有闭式解法。因此,我们使用迭代的优化算法(例如梯度下降法,或 L-BFGS)。经过求导,我们得到梯度公式如下:

让我们来回顾一下符号 "
" 的含义。
本身是一个向量,它的第
个元素
是
对
的第
个分量的偏导数。
有了上面的偏导数公式以后,我们就可以将它代入到梯度下降法等算法中,来最小化
。 例如,在梯度下降法的标准实现中,每一次迭代需要进行如下更新:
(
)。
当实现 softmax 回归算法时, 我们通常会使用上述代价函数的一个改进版本。具体来说,就是和权重衰减(weight decay)一起使用。我们接下来介绍使用它的动机和细节。
Softmax回归模型参数化的特点:
Softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量
中减去了向量
,这时,每一个
都变成了
(
)。此时假设函数变成了以下的式子:
注释:这个“冗余”的意思是参数太多,N方程解N个未知数,现在出现N个方程N+1个未知数,那么出现的结果就是未知数的解不唯一。

换句话说,从
中减去
完全不影响假设函数的预测结果!这表明前面的 softmax 回归模型中存在冗余的参数。更正式一点来说, Softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数
。
进一步而言,如果参数
是代价函数
的极小值点,那么
同样也是它的极小值点,其中
可以为任意向量。因此使
最小化的解不是唯一的。(有趣的是,由于
仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)
注释:上面已经说明解不唯一,那么就等于这个函数的最大似然函数不收敛-->>不存在局部最优解-->>Hessian矩阵是不存在的-->>那么最大似然函数就是无解的。。。
注意,当
时,我们总是可以将
替换为
(即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量
(或者其他
中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的
个参数
(其中
),我们可以令
,只优化剩余的
个参数,这样算法依然能够正常工作。
在实际应用中,为了使算法实现更简单清楚,往往保留所有参数
,而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。
权重衰减:

我们通过添加一个权重衰减项
来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:

有了这个权重衰减项以后 (
),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为
是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。
为了使用优化算法,我们需要求得这个新函数
的导数,如下:

通过最小化
,我们就能实现一个可用的 softmax 回归模型。
Softmax回归与Logistic 回归的关系:
当类别数
时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当
时,softmax 回归的假设函数为:

利用softmax回归参数冗余的特点,我们令
,并且从两个参数向量中都减去向量
,得到:

因此,用
来表示
,我们就会发现 softmax 回归器预测其中一个类别的概率为
,另一个类别概率的为
,这与 logistic回归是一致的。
Softmax 回归 vs. k 个二元分类器:
注释:这里好理解了,唯一性用SoftMax,不唯一用K个二分类器。
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
原文地址:http://deeplearning.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92
StanFord ML 笔记 第三部分的更多相关文章
- StanFord ML 笔记 第五部分
1.朴素贝叶斯的多项式事件模型: 趁热打铁,直接看图理解模型的意思:具体求解可见下面大神给的例子,我这个是流程图. 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate ...
- StanFord ML 笔记 第九部分
第九部分: 1.高斯混合模型 2.EM算法的认知 1.高斯混合模型 之前博文已经说明:http://www.cnblogs.com/wjy-lulu/p/7009038.html 2.EM算法的认知 ...
- StanFord ML 笔记 第八部分
第八部分内容: 1.正则化Regularization 2.在线学习(Online Learning) 3.ML 经验 1.正则化Regularization 1.1通俗解释 引用知乎作者:刑无刀 ...
- StanFord ML 笔记 第一部分
本章节内容: 1.学习的种类及举例 2.线性回归,拟合一次函数 3.线性回归的方法: A.梯度下降法--->>>批量梯度下降.随机梯度下降 B.局部线性回归 C.用概率证明损失函数( ...
- StanFord ML 笔记 第十部分
第十部分: 1.PCA降维 2.LDA 注释:一直看理论感觉坚持不了,现在进行<机器学习实战>的边写代码边看理论
- StanFord ML 笔记 第六部分&&第七部分
第六部分内容: 1.偏差/方差(Bias/variance) 2.经验风险最小化(Empirical Risk Minization,ERM) 3.联合界(Union bound) 4.一致收敛(Un ...
- StanFord ML 笔记 第四部分
第四部分: 1.生成学习法 generate learning algorithm 2.高斯判别分析 Gaussian Discriminant Analysis 3.朴素贝叶斯 Navie Baye ...
- StanFord ML 笔记 第二部分
本章内容: 1.逻辑分类与回归 sigmoid函数概率证明---->>>回归 2.感知机的学习策略 3.牛顿法优化 4.Hessian矩阵 牛顿法优化求解: 这个我就不记录了,看到一 ...
- PyQt4入门学习笔记(三)
# PyQt4入门学习笔记(三) PyQt4内的布局 布局方式是我们控制我们的GUI页面内各个控件的排放位置的.我们可以通过两种基本方式来控制: 1.绝对位置 2.layout类 绝对位置 这种方式要 ...
随机推荐
- 无界面运行Jmeter压测脚本 --后知者
原文作者---后知者 原文地址:http://www.cnblogs.com/houzhizhe/p/8119735.html [后知者的故事]:针对单一接口压测时出现了从未遇到的问题,设好并发量后用 ...
- alias 创建别名
在我们的"/home/用户名/"的目录下,会有一个“.bashrc”文件,修改步骤如下: 在文件的末尾添加: alias 想要的别名=文件路径(文件路劲加引号)例如:alias p ...
- Excel技巧--批量生成指定名称的文件夹
当我要按excel表当中的名字来批量生成文件夹时,手动一个个制作很麻烦(特别是成百上千个时).于是我们可以这么做: 1.在名字右侧建立公式:"MD "&A2. 2.将公式拖 ...
- 内存共享【Delphi版】
一.原理 通过使用“内存映射文件”,实现内存共享 二.主要操作 共享内存结构: PShareMem = ^TShareMem; TShareMem = Record id:string ...
- Python多版本共存virtualenv配置
virtualenv 前提是已经安装好了python.我的ubuntu是自带了python2.7和python3.6 安装vrtualenv sudo apt-get install python-v ...
- Speeding Up The Traveling Salesman Using Dynamic Programming
Copied From:https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b ...
- Java判断两个List是否相同
1.利用Java中为List提供的方法retainAll() /** * 判断两个List内的元素是否相同 * <p> * 此方法有bug 见Food.class * * @param l ...
- 用winrar和ftp命令实现自动备份文件并自动上传到指定的ftp服务器
这篇文章主要介绍了用winrar和ftp命令实现自动备份文件并自动上传到指定的ftp服务器的方法,需要的朋友可以参考下. http://www.jb51.net/article/50359.htm 1 ...
- MySQL总论
1. MySQL基本概念 1.1. 数据库的概念 数据库,简而言之就是存储数据的仓库,可以按照一定的数据结构存储管理大量的数据及数据与数据之间的关系,它本质上是一种信息管理系统.数据库根据存储采用的 ...
- jQuery的杂项
<script src="引入插件"></script> 位置应写在head中,在http协议中,当你浏览网页时,会先加载head里面的东西 刷新页面时 ...
