题目描述:

可怜有一个长度为 \(n\) 的正整数序列 \(A\),但是她觉得 \(A\) 中的数字太小了,这让她很不开心。

于是她选择了 \(m\) 个区间 \([l_i, r_i]\) 和两个正整数 \(a\), \(k\)。她打算从这 \(m\) 个区间里选出恰好$ k$ 个区间,并对每个区间执行一次区间加\(a\) 的操作。(每个区间最多只能选择一次。)

对区间 $[l, r] \(进行一次加\) a \(操作可以定义为对于所有
\)i \in [l, r]$ ,将 \(A_i\) 变成 \(A_i + k\)。现在可怜想要知道怎么选择区间才能让操作后的序列的最小值尽可能的大,即最大化\(min{A_i}\)

数据范围:

\(n,m \leq 200 ,T \leq 2000,k \leq m,a \leq 100,A_i \leq 10^8\)

题解:

差点以为做了个假题...

疯狂T:二分写炸

直接二分最小值判断即可,维护最小值用优先队列。


等等...这题不是T1?

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 10;
int n,m,k,v;
priority_queue<int>q;
struct node {
int l;
int r;
}dat[MAXN];
int a[MAXN];
int c[MAXN];
int T,l,r;
int cnt;
int ans;
bool cmp(node a,node b) {
return a.l == b.l ? a.r < b.r : a.l < b.l;
}
bool ok(int mid) {
memset(c,0,MAXN);
cnt = 0;
while(!q.empty()) q.pop();
int it = 1;
for(int i = 1;i <= n; ++i) {
while(it <= m and dat[it].l <= i) {
q.push(dat[it].r);
it ++;
}
c[i] += c[i - 1];
while(!q.empty() and c[i] + a[i] < mid and cnt < k) {
int x = q.top();q.pop();
if(x >= i) {
c[i] += v;
c[x + 1] -= v;
++cnt;
}
}
if(c[i] + a[i] < mid) return 0;
}
return 1;
}
int read () {
int q=0,f=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;ch=getchar();
}
while(isdigit(ch)){
q=q*10+ch-'0';ch=getchar();
}
return q*f;
}
int main (){
T = read();
while(T--) {
n = read(),m = read(),k = read(),v = read();
l = INT_MAX;
for(int i = 1;i <= n; ++i) {
a[i] = read();
l = min(l,a[i]);
}
r = 0x3f3f3f3f;
for(int i = 1;i <= m; ++i) {
dat[i].l = read();
dat[i].r = read();
}
sort(dat + 1,dat + m + 1,cmp);
while(l <= r) {
int mid = (l + r) >> 1;
if(ok(mid)) {
l = mid + 1;
ans = mid;
}
else r = mid - 1;
}
printf("%d\n",ans);
}
return 0;
}

JXOI2017 加法的更多相关文章

  1. 【BZOJ5321】[JXOI2017]加法(贪心)

    [BZOJ5321][JXOI2017]加法(贪心) 题面 BZOJ 洛谷 题解 显然二分答案,算一下每个点至少要覆盖的次数.从左往右考虑如果这个点覆盖次数不够,就会选择覆盖这个点的.右端点最大的线段 ...

  2. [bzoj5321] [Jxoi2017]加法

    Description 可怜有一个长度为 n 的正整数序列 A,但是她觉得 A 中的数字太小了,这让她很不开心. 于是她选择了 m 个区间 [li, ri] 和两个正整数 a, k.她打算从这 m 个 ...

  3. 洛谷P4064 [JXOI2017]加法(贪心 差分)

    题意 题目链接 Sol 这题就是一个很显然的贪心... 首先二分一个答案,然后check是否可行.check的时候我们需要对每个位置\(i\),维护出所有左端点在\(i\)左侧,右端点在\(i\)右侧 ...

  4. BZOJ5321 JXOI2017加法(二分答案+贪心+堆+树状数组)

    二分答案后得到每个位置需要被加的次数.考虑贪心.从左到右考虑每个位置,将以该位置为左端点的区间按右端点从大到小加进堆.看该位置还需要被加多少次,如果不需要加了就不管,否则取堆顶区间将其选择,BIT实现 ...

  5. 【[JXOI2017]加法】

    江西竟然还有省选,而且还是可怜题,实在是有点可怕 这道题还是比较清真的,大概是最简单的可怜题? 首先看到最大值最小,就很容易想到了二分答案 对于一个二分出来的答案\(mid\),去把原数列扫一遍就可以 ...

  6. BZOJ5321 & 洛谷4064 & LOJ2274:[JXOI2017]加法——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5321 https://www.luogu.org/problemnew/show/P4064 ht ...

  7. [P4064][JXOI2017]加法(贪心+树状数组+堆)

    题目描述 可怜有一个长度为 n 的正整数序列 A,但是她觉得 A 中的数字太小了,这让她很不开心. 于是她选择了 m 个区间 [li, ri] 和两个正整数 a, k.她打算从这 m 个区间里选出恰好 ...

  8. luogu P4064 [JXOI2017]加法

    题目描述 可怜有一个长度为 n 的正整数序列 A,但是她觉得 A 中的数字太小了,这让她很不开心. 于是她选择了 m 个区间 [li, ri] 和两个正整数 a, k.她打算从这 m 个区间里选出恰好 ...

  9. jxoi2017

    题解: 并不知道题目顺序就按照难度排序了 [JXOI2017]加法 这是一道很简单的贪心 最小值最大二分答案 然后我们可以从左向右考虑每一个位置 如果他还需要+A 我们就从能覆盖它的区间中挑一个最右的 ...

随机推荐

  1. JRE和JVM的区别

    JRE和JVM的区别       JRE(JavaRuntimeEnvironment,Java运行环境),也就是Java平台.所有的Java程序都要在JRE下才能运行.JDK的工具也是Java程序, ...

  2. configure: error: invalid variable name: `-prefix'

    configure: error: invalid variable name: `-prefix'其实就是写法的问题 正确写法 把prefix前面的"-"改成“--”

  3. StringUtils 方法全集

    最近做项目需要,经常需要最字符串进行拆分等操作,经搜索和研究,发现了一篇StringUtils方法全集的文章,不错,特贴出来,以后用: 参考:http://blog.sina.com.cn/s/blo ...

  4. Linux下安装Tomcat服务器

    Linux下安装Tomcat服务器 一.总结 一句话总结: linux多用才能熟 1.阿里云上面我们买的服务器,怎么让它可以访问特定的端口? 就是给服务器的安全组添加规则:实例-->更多--&g ...

  5. QTP学习笔记---datatable应用

    DataTable应用1.定位数据行 DataTable.GetSheet() 2.获取当前行 GetCurrentRow3.获取指定行的值 getValueByRow = DataTable.Get ...

  6. C++ placement new与内存池

    参考:https://blog.csdn.net/Kiritow/article/details/51314612 有些时候我们需要能够长时间运行的程序(例如监听程序,服务器程序)对于这些7*24运行 ...

  7. canvas简单画图板

    <!DOCTYPE html> <html lang='en'> <head> <meta charset='UTF-8'> <title> ...

  8. 嵌入式C语言4.4 C语言内存空间的使用-多级指针

    多级指针 int **p; 存访地址的地址空间

  9. Android/IOS APP界面设计之尺寸规范

    1.尺寸以及分辨率 iPhone的界面尺寸不用多说,640*960是基本OK的,也可以是适应5S的640*1136,马上iPhone 6也快来了(随便吐槽一下网上曝的真机谍照,真是丑到离谱...),只 ...

  10. Promise篇

    Promise 原理解析与实现(遵循Promise/A+规范)   1 什么是Promise? Promise是JS异步编程中的重要概念,异步抽象处理对象,是目前比较流行Javascript异步编程解 ...