'''
Created on 2017年4月21日 @author: weizhen
'''
#4、滑动平均模型
import tensorflow as tf
#定义一个变量用于计算滑动平均,这个变量的初始值为0.
#类型为tf.float32,因为所有需要计算滑动平均的变量必须是实数型
v1=tf.Variable(0,dtype=tf.float32)
#这里step变量模拟神经网络中迭代的轮数,可以用于动态控制衰减率
step=tf.Variable(0,trainable=False)
#定义一个滑动平均的类(class)。初始化时给定了衰减率(0.99)和控制衰减率的变量step
ema=tf.train.ExponentialMovingAverage(0.99,step)
#定义一个更新变量滑动平均的操作。这里需要给定一个列表,每次执行这个操作时
#这个列表中的变量都会被更新
maintain_averages_op=ema.apply([v1])
with tf.Session() as sess:
#初始化所有变量
init_op=tf.global_variables_initializer()
sess.run(init_op) #通过ema.average(v1)获取滑动平均之后变量的取值。在初始化之后变量v1的值和v1的滑动平均都为0
print(sess.run([v1,ema.average(v1)])) #输出[0.0,0.0] #更新变量v1的值到5
sess.run(tf.assign(v1,5))
#更新v1的滑动平均值。衰减率为min{0.99,(1+step)/(10+step)=0.1}=0.1
#所以v1的滑动平均会被更新为0.1*0+0.9*5=4.5
sess.run(maintain_averages_op)
print(sess.run([v1,ema.average(v1)])) #更新step的值为10000
sess.run(tf.assign(step,10000))
#更新v1的值为10
sess.run(tf.assign(v1,10))
#更新v1的滑动平均值。衰减率为min{0.99,(1+step)/(10+step)=0.999}}=0.99
#所以v1的滑动平均会被更新为0.99*4.5+0.01*10=4.555
sess.run(maintain_averages_op)
print(sess.run([v1,ema.average(v1)]))
#输出[10.0,4.5549998]
#再次更新滑动平均值,得到的新滑动平均值为0.99*4.555+0.01*10=4.60945
sess.run(maintain_averages_op)
print(sess.run([v1,ema.average(v1)]))
#输出[10.0,4.6094499]

输出的结果如下所示

E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "BestSplits" device_type: "CPU"') for unknown op: BestSplits
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "CountExtremelyRandomStats" device_type: "CPU"') for unknown op: CountExtremelyRandomStats
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "FinishedNodes" device_type: "CPU"') for unknown op: FinishedNodes
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "GrowTree" device_type: "CPU"') for unknown op: GrowTree
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "ReinterpretStringToFloat" device_type: "CPU"') for unknown op: ReinterpretStringToFloat
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "SampleInputs" device_type: "CPU"') for unknown op: SampleInputs
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "ScatterAddNdim" device_type: "CPU"') for unknown op: ScatterAddNdim
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "TopNInsert" device_type: "CPU"') for unknown op: TopNInsert
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "TopNRemove" device_type: "CPU"') for unknown op: TopNRemove
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "TreePredictions" device_type: "CPU"') for unknown op: TreePredictions
E c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:943] OpKernel ('op: "UpdateFertileSlots" device_type: "CPU"') for unknown op: UpdateFertileSlots
[0.0, 0.0]
[5.0, 4.5]
[10.0, 4.5549998]
[10.0, 4.6094499]

78、tensorflow滑动平均模型,用来更新迭代的衰减系数的更多相关文章

  1. Tensorflow滑动平均模型tf.train.ExponentialMovingAverage解析

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 移动平均法相关知识 移动平均法又称滑动平均法.滑动平均模型法(Moving average,MA) 什么是移动平均法 移动平均法是用一组最近的实 ...

  2. 吴裕雄 PYTHON 神经网络——TENSORFLOW 滑动平均模型

    import tensorflow as tf v1 = tf.Variable(0, dtype=tf.float32) step = tf.Variable(0, trainable=False) ...

  3. tensorflow随机梯度下降算法使用滑动平均模型

    在采用随机梯度下降算法训练神经网络时,使用滑动平均模型可以提高最终模型在测试集数据上的表现.在Tensflow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模 ...

  4. Tensorflow中的滑动平均模型

    原文链接 在Tensorflow的教程里面,使用梯度下降算法训练神经网络时,都会提到一个使模型更加健壮的策略,即滑动平均模型. 基本思想 在使用梯度下降算法训练模型时,每次更新权重时,为每个权重维护一 ...

  5. tensorflow笔记之滑动平均模型

    tensorflow使用tf.train.ExponentialMovingAverage实现滑动平均模型,在使用随机梯度下降方法训练神经网络时候,使用这个模型可以增强模型的鲁棒性(robust),可 ...

  6. tensorflow入门笔记(二) 滑动平均模型

    tensorflow提供的tf.train.ExponentialMovingAverage 类利用指数衰减维持变量的滑动平均. 当训练模型的时候,保持训练参数的滑动平均是非常有益的.评估时使用取平均 ...

  7. 吴裕雄 python 神经网络——TensorFlow 滑动平均类的保存

    import tensorflow as tf v = tf.Variable(0, dtype=tf.float32, name="v") for variables in tf ...

  8. tensorflow 滑动平均使用和恢复

    https://www.cnblogs.com/hrlnw/p/8067214.html

  9. 『TensorFlow』滑动平均

    滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...

随机推荐

  1. MySQL新建数据库时utf8_general_ci编码解释

    utf8_unicode_ci和utf8_general_ci对中英文来说没有实质的差别.utf8_general_ci: 校对速度快,但准确度稍差.utf8_unicode_ci: 准确度高,但校对 ...

  2. hbase 1.4 部署

    centos 7 部署 hbase 1.4.11 版本 在部署 hbase 前,首先安装好 jdk 1.7 和 zookeeper 3.4.14 软件. 部署 zookeeper 软件,可以参考 zk ...

  3. Intel CPUs

    http://en.wikipedia.org/wiki/Intel_cpus List of Intel Atom microprocessors List of Intel Xeon microp ...

  4. 小白学 Python 爬虫(26):为啥上海二手房你都买不起

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  5. shell脚本——注释(单行注释 多行注释)

    参考 : https://blog.csdn.net/weixin_42167759/article/details/80703570 单行注释 以"#"开头的行就是注释,会被解释 ...

  6. 用 Flask 来写个轻博客 (36) — 使用 Flask-RESTful 来构建 RESTful API 之五

    目录 目录 前文列表 PUT 请求 DELETE 请求 测试 对一条已经存在的 posts 记录进行 update 操作 删除一条记录 前文列表 用 Flask 来写个轻博客 (1) - 创建项目 用 ...

  7. Python Django 编写一个简易的后台管理工具4-添加admin模版

    导入admin后台模版 可以在网上任意搜索模版,我这里也提供一个地址github 拷贝admin后台的html文件至项目的templates文件夹 创建static文件夹,将admin后台的js,im ...

  8. mybatis分页插件使用

    一:导入依赖 <!--分页插件--> <dependency> <groupId>com.github.pagehelper</groupId> < ...

  9. VB - 操作符(含Is)

    在VBScript运算符中,加减乘除都是我们常用的符号,乘方使用的是 ^ ,取模使用的Mod. 在比较操作符中,等于.小于.大于.小于等于.大于等于都与我们常用的符号是一致的,而不等于是小于和大于连用 ...

  10. java File I/O

    File类: 常用方法: boolean exists( ):判断文件或目录是否存在 boolean isFile( ):判断是否是文件 boolean isDirectory( ):判断是否是目录 ...