http://acm.hdu.edu.cn/showproblem.php?pid=4513

Problem Description
  吉哥又想出了一个新的完美队形游戏!
  假设有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求,则就是新的完美队形:

  1、挑出的人保持原队形的相对顺序不变,且必须都是在原队形中连续的;
  2、左右对称,假设有m个人形成新的队形,则第1个人和第m个人身高相同,第2个人和第m-1个人身高相同,依此类推,当然如果m是奇数,中间那个人可以任意;
  3、从左到中间那个人,身高需保证不下降,如果用H表示新队形的高度,则H[1] <= H[2] <= H[3] .... <= H[mid]。

  现在吉哥想知道:最多能选出多少人组成新的完美队形呢?

 
Input
  输入数据第一行包含一个整数T,表示总共有T组测试数据(T <= 20);
  每组数据首先是一个整数n(1 <= n <= 100000),表示原先队形的人数,接下来一行输入n个整数,表示原队形从左到右站的人的身高(50 <= h <= 250,不排除特别矮小和高大的)。
 
Output
  请输出能组成完美队形的最多人数,每组输出占一行。
 
Sample Input
2
3
51 52 51
4
51 52 52 51
 
Sample Output
3
4
 
Source
 
Recommend
liuyiding
题意:求最长递减回文串
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <algorithm>
#include <iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include <stdio.h>
#include <string.h>
using namespace std;
int a[] , b[];
int p[]; int num; int main()
{
int t ;
scanf("%d" , &t);
while(t--)
{
int l ;
scanf("%d" , &l);
for(int i = ; i < l ; i++)
{
scanf("%d" , &a[i]);
}
int len = ;
b[len++] = -;
b[len++] = - ;
for(int i = ; i < l ; i++)
{
b[len++] = a[i];
b[len++] = - ;
}
int mx = - , mid , ans = ;
for(int i = ; i < len ; i++)
{
if(mx > i)
{
p[i] = min(p[*mid-i] , mx - i);
}
else
{
p[i] = ;
}
while(b[i-p[i]] == b[i+p[i]] && b[i - p[i] + ] >= b[i - p[i]])//从中间往两边递减
{
p[i]++;
}
if(mx < p[i] + i)
{
mid = i ;
mx = p[i] + i;
}
ans = max(ans , p[i] - );
}
printf("%d\n" ,ans);
} return ;
}

Manacher(最长递减回文串)的更多相关文章

  1. Manacher(最长镜面回文串)

    I - O'My! Gym - 101350I Note: this is a harder version of Mirrored string I. The gorillas have recen ...

  2. BZOJ 2565: 最长双回文串 [Manacher]

    2565: 最长双回文串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1842  Solved: 935[Submit][Status][Discu ...

  3. BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)

    BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...

  4. bzoj 2565: 最长双回文串 manacher算法

    2565: 最长双回文串 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...

  5. 计蒜之道 初赛 第三场 题解 Manacher o(n)求最长公共回文串 线段树

    腾讯手机地图 腾讯手机地图的定位功能用到了用户手机的多种信号,这当中有的信号的作用范围近.有的信号作用的范围则远一些.有的信号相对于用户在不同的方位强度是不同的,有的则是在不论什么一个方向上信号强度都 ...

  6. 【BZOJ2565】最长双回文串 Manacher

    [BZOJ2565]最长双回文串 Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为“abc”,逆序为“cba”,不相同).输入长度为 ...

  7. BZOJ2565 最长双回文串 【Manacher】

    BZOJ2565 最长双回文串 Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为"abc",逆序为"c ...

  8. [国家集训队]最长双回文串 manacher

    ---题面--- 题解: 首先有一个直观的想法,如果我们可以求出对于位置i的最长后缀回文串和最长前缀回文串,那么我们枚举分界点然后合并前缀和后缀不就可以得到答案了么? 所以我们的目标就是求出这两个数列 ...

  9. Manacher【p4555】 [国家集训队]最长双回文串

    题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为 n 的串 S ,求 S 的最长双回文子串 T ,即可 ...

随机推荐

  1. JavaScript数组增删方法总结

    数组是JavaScript中常见的一个对象,在这篇文章中主要整理数组增删改查方面的相关操作方法. 首先我们创建一个数组 添加元素: push(elment) 从后面添加元素,返回数组的长度   uns ...

  2. Python之路-numpy模块

    这里是首先需要安装好Anaconda Anaconda的安装参考Python之路-初识python及环境搭建并测试 配置好环境之后开始使用Jupyter Notebook 1.打开cmd,输入 jup ...

  3. Webpack Loader种类以及执行顺序

    我们在用webpack构建项目的时候,有两种配置打包文件的方式: import或者require :a-loader!b-loader!.././static/dog.png(打包某一个文件) 配置w ...

  4. sqli(7)

    前言 第7关 导出文件GET字符型注入 步骤OK,但是就是不能写入文件,不知是文件夹的问题还是自己操作的问题.但是确实,没有导入成功. 1. 查看闭合,看源码,发现闭合是((‘ ’)): 2.查看所在 ...

  5. JS 控制子页面刷新父页面

    iframe里面的子页,用parent.location.href = parent.location.reload();如果是window.open 打开就用opener.location.relo ...

  6. Linux性能优化从入门到实战:04 CPU篇:CPU使用率

      CPU使用率是单位时间内CPU使用情况的统计,以百分比方式展示. $ top top - 11:46:45 up 7 days, 11:52, 1 user, load average: 0.00 ...

  7. 脚本_查看所有虚拟机磁盘以及 CPU 的使用量

    #!bin/bash#作者:liusingbon#功能:查看所有虚拟机磁盘使用量以及 CPU 使用量信息read -p "按任意键进入查看页面.比如按下Enter键" keyvir ...

  8. union 横向组合

    select sum(zs) zs,sum(zl) zl,sum(ts) ts,sum(lxcbw) lxcbw,sum(bz) bz,sum(sfzqt) sfzqtfrom (select cou ...

  9. Android Studio使用阿里云Aliyun Maven仓库

    如下所示,在build.gradle中添加Aliyun Maven仓库 // Top-level build file where you can add configuration options ...

  10. Nginx-常用命令和配置文件

    Nginx常用命令 1.启动命令 在/usr/local/nginx/sbin 目录下执行 ./nginx 2.关闭命令 在/usr/local/nginx/sbin 目录下执行 ./nginx s ...