Description

小Y来到了一个新的城市旅行。她发现了这个城市的布局是网格状的,也就是有n条从东到西的道路和m条从南到北
的道路,这些道路两两相交形成n×m个路口 (i,j)(1≤i≤n,1≤j≤m)。她发现不同的道路路况不同,所以通过不
同的路口需要不同的时间。通过调查发现,从路口(i,j)到路口(i,j+1)需要时间 r(i,j),从路口(i,j)到路口(i+1
,j)需要时间c(i,j)。注意这里的道路是双向的。小Y有q个询问,她想知道从路口(x1,y1)到路口(x2,y2)最少需要
花多少时间。

Input

第一行包含 2 个正整数n,m,表示城市的大小。
 
接下来n行,每行包含m?1个整数,第i行第j个正整数表示从一个路口到另一个路口的时间r(i,j)。
 
接下来n?1行,每行包含m个整数,第i行第j个正整数表示从一个路口到另一个路口的时间c(i,j)。
 
接下来一行,包含1个正整数q,表示小Y的询问个数。
 
接下来q行,每行包含4个正整数 x1,y1,x2,y2,表示两个路口的位置。

Output

输出共q行,每行包含一个整数表示从一个路口到另一个路口最少需要花的时间。

Sample Input

2 2
2
3
6 4
2
1 1 2 2
1 2 2 1

Sample Output

6
7

Solution

网格图求任意两点间的最短路。

可以用分治来解决。

之前校内训练的时候CJK学长出了一道IOI2013的题,就是用线段树来维护网格图的最短路。这题也很类似,离线询问以后,每次把长边拿出来分治,考虑经过中间这一排点的和没经过这一排点的。没经过的递归下去做,经过的就跑一遍堆优化dj或者spfa就好了。

Code

 #include <cstdio>
#include <cstring> #define R register
#define maxn 20010
#define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
#define id(_a, _b) (((_a) - 1) * m + (_b) - 1)
#define id1(_x) ((_x) / m + 1)
#define id2(_x) ((_x) % m + 1)
int n, m;
struct Edge {
Edge *next;
int to, w;
} *last[maxn], e[maxn << ], *ecnt = e;
inline void link(R int a, R int b, R int w)
{
*++ecnt = (Edge) {last[a], b, w}; last[a] = ecnt;
*++ecnt = (Edge) {last[b], a, w}; last[b] = ecnt;
}
struct Ques {
int x1, y1, x2, y2, id;
} qu[], tmp[];
int ans[], dis[maxn], q[maxn * ], r[maxn], c[maxn];
bool inq[maxn];
#define inf 0x7fffffff
struct Data {
int pos, dis;
inline bool operator < (const Data &that) const {return dis > that.dis;}
} ;
#include <queue>
std::priority_queue<Data> hp;
void spfa(R int s, R int nl, R int nr, R int ml, R int mr)
{
//for (R int i = nl; i <= nr; ++i) for (R int j = ml; j <= mr; ++j) dis[id(i, j)] = inf;
/*
R int head = maxn * 20, tail = maxn * 20 + 1;
q[maxn * 20 + 1] = s; dis[s] = 0;
*/
hp.push((Data) {s, dis[s] = });
while (/*head < tail*/!hp.empty())
{
// R int now = q[++head]; inq[now] = 0;
R Data tp = hp.top(); hp.pop();
R int now = tp.pos;
for (R Edge *iter = last[now]; iter; iter = iter -> next)
if (dis[iter -> to] > dis[now] + iter -> w && nl <= id1(iter -> to) && id1(iter -> to) <= nr && ml <= id2(iter -> to) && id2(iter -> to) <= mr)
{
dis[iter -> to] = dis[now] + iter -> w;
// !inq[iter -> to] ? inq[dis[iter -> to] < dis[q[head + 1]] ? q[head--] = iter -> to : q[++tail] = iter -> to] = 1 : 0;
hp.push((Data) {iter -> to, dis[iter -> to]});
}
}
}
void work(R int nl, R int nr, R int ml, R int mr, R int ql, R int qr)
{
if (nl > nr || ml > mr) return ;
if (ql > qr) return ;
if (nr - nl + <= mr - ml + )
{
R int mid = ml + mr >> ;
for (R int i = nl; i <= nr; ++i) for (R int j = ml; j <= mr; ++j) dis[id(i, j)] = inf;
for (R int i = nl; i <= nr; ++i)
{
if (i != nl)
{
for (R int ii = nl; ii <= nr; ++ii) for (R int jj = ml; jj <= mr; ++jj)
dis[id(ii, jj)] += c[id(i - , mid)];
}
spfa(id(i, mid), nl, nr, ml, mr);
for (R int j = ql; j <= qr; ++j)
cmin(ans[qu[j].id], dis[id(qu[j].x1, qu[j].y1)] + dis[id(qu[j].x2, qu[j].y2)]);
}
R int qql = ql - , qqr = qr + ;
for (R int i = ql; i <= qr; ++i)
if (qu[i].y1 < mid && qu[i].y2 < mid)
tmp[++qql] = qu[i];
else if (qu[i].y1 > mid && qu[i].y2 > mid)
tmp[--qqr] = qu[i]; for (R int i = ql; i <= qql; ++i) qu[i] = tmp[i];
for (R int i = qqr; i <= qr; ++i) qu[i] = tmp[i];
work(nl, nr, ml, mid - , ql, qql);
work(nl, nr, mid + , mr, qqr, qr);
}
else
{
R int mid = nl + nr >> ;
for (R int i = nl; i <= nr; ++i) for (R int j = ml; j <= mr; ++j) dis[id(i, j)] = inf;
for (R int i = ml; i <= mr; ++i)
{
if (i != ml)
{
for (R int ii = nl; ii <= nr; ++ii) for (R int jj = ml; jj <= mr; ++jj)
dis[id(ii, jj)] += r[id(mid, i - )];
}
spfa(id(mid, i), nl, nr, ml, mr);
for (R int j = ql; j <= qr; ++j)
cmin(ans[qu[j].id], dis[id(qu[j].x1, qu[j].y1)] + dis[id(qu[j].x2, qu[j].y2)]);
}
R int qql = ql - , qqr = qr + ;
for (R int i = ql; i <= qr; ++i)
if (qu[i].x1 < mid && qu[i].x2 < mid)
tmp[++qql] = qu[i];
else if (qu[i].x1 > mid && qu[i].x2 > mid)
tmp[--qqr] = qu[i]; for (R int i = ql; i <= qql; ++i) qu[i] = tmp[i];
for (R int i = qqr; i <= qr; ++i) qu[i] = tmp[i];
work(nl, mid - , ml, mr, ql, qql);
work(mid + , nr, ml, mr, qqr, qr);
}
}
int main()
{
scanf("%d%d", &n, &m);
for (R int i = ; i <= n; ++i) for (R int j = ; j < m; ++j)
{R int w; scanf("%d", &w); link(id(i, j), id(i, j + ), w); r[id(i, j)] = w;}
for (R int i = ; i < n; ++i) for (R int j = ; j <= m; ++j)
{R int w; scanf("%d", &w); link(id(i, j), id(i + , j), w); c[id(i, j)] = w;}
R int Q; scanf("%d", &Q);
for (R int i = ; i <= Q; ++i) scanf("%d%d%d%d", &qu[i].x1, &qu[i].y1, &qu[i].x2, &qu[i].y2), qu[i].id = i;
memset(ans, , (Q + ) << );
work(, n, , m, , Q);
for (R int i = ; i <= Q; ++i) printf("%d\n", ans[i]);
return ;
}

【BZOJ4456】 [Zjoi2016]旅行者 / 【UOJ #184】 【ZJOI2016】旅行者的更多相关文章

  1. BZOJ4456/UOJ#184[Zjoi2016]旅行者 分治 最短路

    原文链接http://www.cnblogs.com/zhouzhendong/p/8682133.html 题目传送门 - BZOJ4456 题目传送门 - UOJ#184 题意 $n\times ...

  2. 【BZOJ 4456】【UOJ #184】【ZJOI 2016】旅行者

    http://www.lydsy.com/JudgeOnline/problem.php?id=4456 http://uoj.ac/problem/184 参考(抄)的晨爷的题解(代码) 对矩形进行 ...

  3. [CNBETA]动图告诉你 光速到底有多慢?

    https://www.cnbeta.com/articles/tech/811381.htm 我们知道,30万公里每秒的光速是宇宙内目前已知的最高速度,至少现有人类理论体系下它是不可跨越的.30万公 ...

  4. bzoj4456: [Zjoi2016]旅行者

    题目链接 bzoj4456: [Zjoi2016]旅行者 题解 网格图,对于图分治,每次从中间切垂直于长的那一边, 对于切边上的点做最短路,合并在图两边的答案. 有点卡常 代码 #include< ...

  5. 【BZOJ4456】[Zjoi2016]旅行者 分治+最短路

    [BZOJ4456][Zjoi2016]旅行者 Description 小Y来到了一个新的城市旅行.她发现了这个城市的布局是网格状的,也就是有n条从东到西的道路和m条从南到北的道路,这些道路两两相交形 ...

  6. [BZOJ4456] [Zjoi2016]旅行者 分治+最短路

    4456: [Zjoi2016]旅行者 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 777  Solved: 439[Submit][Status] ...

  7. BZOJ4456/UOJ184 [Zjoi2016]旅行者

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  8. BZOJ4456 ZJOI2016旅行者(分治+最短路)

    感觉比较套路,每次在长边中轴线处切一刀,求出切割线上的点对矩形内所有点的单源最短路径,以此更新每个询问,递归处理更小的矩形.因为若起点终点跨过中轴线是肯定要经过的,而不跨过中轴线的则可以选择是否经过中 ...

  9. [BZOJ4456][ZJOI2016]旅行者:分治+最短路

    分析 类似于点分治的思想,只统计经过分割线的最短路,然后把地图一分为二. 代码 #include <bits/stdc++.h> #define rin(i,a,b) for(regist ...

随机推荐

  1. springBoot中tomcat默认端口修改

    springboot在启动tomcat的默认端口是8080,在实际开发中,应客户要求必须使用80端口. 研究springboot后发现有两种方式可以实现修改tomcat的端口 第一.直接修改appli ...

  2. c++练习之模板类的练习

    编写一维数组模板.可以无限扩展,任意数据类型,可以进行插入,删除,查找,排序等操作 #include<iostream> using std::cout; using std::cin; ...

  3. PHP使用CURL抓取页面

    cURL的基本原理 curl是利用URL语法在命令行方式下工作的开源文件传输工具,他能够从互联网上获得各种各样的网络资源.简单来说,curl就是抓取页面的升级版. <?php //1.初始化,创 ...

  4. Codeforces 1201D. Treasure Hunting

    传送门 看一眼感觉就是 $dp$,但是似乎状态太多了 考虑推推性质 首先每到一行都要把所有宝藏都走到,那么一定会走到最左边的和最右边的宝藏 注意到一旦走完所有宝藏时肯定是在最左边或者最右边的宝藏位置 ...

  5. dubbo看这一篇就够了

    为什么要有分布式 近年来微服务.分布式等名词非常的火,那么我们又为什么要进行系统拆分?如何进行拆分呢?阿里的dubbo作为分布式框架的代表,无疑是推动了整个行业技术的进步.以前中小型公司都是一个war ...

  6. Spring Boot 获取yaml配置文件信息

    Spring boot 项目启动过程中: org.springframework.boot.SpringApplication#prepareEnvironment 当程序步入listeners.en ...

  7. HTML5-placeholder属性

    HTML 5<input> placeholder属性 placeholder属性提供可描述输入字段预期值的提示信息(hint). 该提示会在输入字段为空时显示,并会在字段获得焦点时消失. ...

  8. 无法加载文件 C:\Program Files\nodejs\npm.ps1,因为在此系统上禁止运行脚本。

    今天使用npm安装插件时出现了以下错误: 经查,原因:现用执行策略是 Restricted(默认设置) 解决办法: 1.win+X键,使用管理员身份运行power shell 2.输入命令:set-e ...

  9. [转载]十六进制数的两种不同表示:0x和H

    来源:https://blog.csdn.net/u013773644/article/details/519811860x是16进制的前缀,H是16进制的后缀 都是表示十六进制数,意义上没有什么区别 ...

  10. js获取7天之前的日期或者7天之后的日期

    js获取7天之前的日期或者7天之后的日期(网上摘取的,记录自己使用) function fun_date(num) { var date1 = new Date(); //今天时间 var time1 ...