easy version

hard version

问题分析

直接从hard version入手。不难发现从一个数\(x\)能得到的数个数是\(O(\log x)\)的。这样总共有\(O(n\log n)\)个数。然后对每一种数开一个大根堆维护前\(k\)个就好了。

参考程序

#include <bits/stdc++.h>
using namespace std; const int INF = 2147483647;
const int Maxn = 200010;
const int MaxAlpha = 200000;
int n, k, A[ Maxn ], Sum[ Maxn ];
priority_queue< int > Pq[ Maxn ];
int main() {
scanf( "%d%d", &n, &k );
for( int i = 1; i <= n; ++i ) scanf( "%d", &A[ i ] );
sort( A + 1, A + n + 1 );
for( int i = 1; i <= n; ++i ) {
int t = 0;
if( Pq[ A[ i ] ].size() == k ) Sum[ A[ i ] ] -= Pq[ A[ i ] ].top(), Pq[ A[ i ] ].pop();
Pq[ A[ i ] ].push( 0 );
while( A[ i ] ) {
++t; A[ i ] /= 2;
if( Pq[ A[ i ] ].size() < k ) Pq[ A[ i ] ].push( t ), Sum[ A[ i ] ] += t;
else
if( Pq[ A[ i ] ].top() > t ) {
Sum[ A[ i ] ] -= Pq[ A[ i ] ].top(), Pq[ A[ i ] ].pop();
Sum[ A[ i ] ] += t; Pq[ A[ i ] ].push( t );
}
}
}
int Ans = INF;
for( int i= 0; i <= MaxAlpha; ++i )
if( Pq[ i ].size() == k )
Ans = min( Ans, Sum[ i ] );
printf( "%d\n", Ans );
return 0;
}

CF1213D Equalizing by Division的更多相关文章

  1. D2. Equalizing by Division (hard version)

    D2. Equalizing by Division (hard version) 涉及下标运算一定要注意下标是否越界!!! 思路,暴力判断以每个数字为到达态最小花费 #include<bits ...

  2. Codeforces 1213D Equalizing by Division

    cf题面 中文题意 给n个数,每次可以把其中一个数字位运算右移一位(即整除以二),问要至少操作几次才能让这n个数中有至少k个相等. 解题思路 这题还有个数据范围更小的简单版本,n和k是50,\(a_i ...

  3. Equalizing by Division

    The only difference between easy and hard versions is the number of elements in the array. You are g ...

  4. codeforces Equalizing by Division (easy version)

    output standard output The only difference between easy and hard versions is the number of elements ...

  5. Codeforces Round 582

    Codeforces Round 582 这次比赛看着是Div.3就打了,没想到还是被虐了,并再次orz各位AK的大神-- A. Chips Moving 签到题.(然而签到题我还调了20min--) ...

  6. CF 题目选做

    写省选的题目对noip没什么大用 关键是 细节题或者是思考题比较重要 练思维自然是CF比较好了 把我见到的比较好的CF题放上来刷一刷. LINK:Complete the projects 就是说一个 ...

  7. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  8. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  9. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

随机推荐

  1. spring配置文件拆分策略及方法

    一.拆分策略 如果一个开发人员负责一个模块,我们采用公用配置(包括数据源.事务等)+每个系统模块一个单独配置文件(包括Dao.Service.Web控制器)的形式 如果是按照分层进行的分工,我们采用公 ...

  2. 模板引擎StringTemplate和模板StringTemplateGroup的应用

    博主很懒什么都没有留下,只留下了一个转载链接!!! http://www.cnblogs.com/Jerry-Chou/archive/2012/12/12/2814693.html

  3. 5表联查yii框架权限控制

    一:控制器部分 <?php namespace app\controllers; use yii\web\Controller; class PreController extends Cont ...

  4. Linux scp命令详解(服务器之间复制文件或目录)

    scp:服务器之间复制文件或目录 一.命令格式: scp [-1246BCpqrv] [-c cipher] [-F ssh_config] [-i identity_file] [-l limit] ...

  5. postMessage解决iframe跨域问题

    转:https://juejin.im/post/5b8359f351882542ba1dcc31 https://juejin.im/post/590c3983ac502e006531df11 ht ...

  6. 富文本编辑器--获取JSON

    获取 JSON 格式的内容 可以通过editor.txt.getJSON获取 JSON 格式的编辑器的内容,v3.0.14开始支持,示例如下 <div id="div1"&g ...

  7. js带有遮罩的弹窗

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  8. LINUX任意精度计算器BC用法

    [用途说明] Bash内置了对整数四则运算的支持,但是并不支持浮点运算,而bc命令可以很方便的进行浮点运算,当然整数运算也不再话下.手册页上说bc是An arbitrary precision cal ...

  9. linux内核驱动module_init解析(1)

    本文转载自博客http://blog.csdn.net/richard_liujh/article/details/45669207 写过linux驱动的程序猿都知道module_init() 这个函 ...

  10. ubuntu搭建gerrit+gitweb代码审核系统

    一.Gerrit的简介 Gerrit是Google开源的一套基于web的代码review工具,它是基于git的版本管理系统.Google开源Gerrit旨在提供一个轻量级框架,用于在代码入库之前对每个 ...