easy version

hard version

问题分析

直接从hard version入手。不难发现从一个数\(x\)能得到的数个数是\(O(\log x)\)的。这样总共有\(O(n\log n)\)个数。然后对每一种数开一个大根堆维护前\(k\)个就好了。

参考程序

#include <bits/stdc++.h>
using namespace std; const int INF = 2147483647;
const int Maxn = 200010;
const int MaxAlpha = 200000;
int n, k, A[ Maxn ], Sum[ Maxn ];
priority_queue< int > Pq[ Maxn ];
int main() {
scanf( "%d%d", &n, &k );
for( int i = 1; i <= n; ++i ) scanf( "%d", &A[ i ] );
sort( A + 1, A + n + 1 );
for( int i = 1; i <= n; ++i ) {
int t = 0;
if( Pq[ A[ i ] ].size() == k ) Sum[ A[ i ] ] -= Pq[ A[ i ] ].top(), Pq[ A[ i ] ].pop();
Pq[ A[ i ] ].push( 0 );
while( A[ i ] ) {
++t; A[ i ] /= 2;
if( Pq[ A[ i ] ].size() < k ) Pq[ A[ i ] ].push( t ), Sum[ A[ i ] ] += t;
else
if( Pq[ A[ i ] ].top() > t ) {
Sum[ A[ i ] ] -= Pq[ A[ i ] ].top(), Pq[ A[ i ] ].pop();
Sum[ A[ i ] ] += t; Pq[ A[ i ] ].push( t );
}
}
}
int Ans = INF;
for( int i= 0; i <= MaxAlpha; ++i )
if( Pq[ i ].size() == k )
Ans = min( Ans, Sum[ i ] );
printf( "%d\n", Ans );
return 0;
}

CF1213D Equalizing by Division的更多相关文章

  1. D2. Equalizing by Division (hard version)

    D2. Equalizing by Division (hard version) 涉及下标运算一定要注意下标是否越界!!! 思路,暴力判断以每个数字为到达态最小花费 #include<bits ...

  2. Codeforces 1213D Equalizing by Division

    cf题面 中文题意 给n个数,每次可以把其中一个数字位运算右移一位(即整除以二),问要至少操作几次才能让这n个数中有至少k个相等. 解题思路 这题还有个数据范围更小的简单版本,n和k是50,\(a_i ...

  3. Equalizing by Division

    The only difference between easy and hard versions is the number of elements in the array. You are g ...

  4. codeforces Equalizing by Division (easy version)

    output standard output The only difference between easy and hard versions is the number of elements ...

  5. Codeforces Round 582

    Codeforces Round 582 这次比赛看着是Div.3就打了,没想到还是被虐了,并再次orz各位AK的大神-- A. Chips Moving 签到题.(然而签到题我还调了20min--) ...

  6. CF 题目选做

    写省选的题目对noip没什么大用 关键是 细节题或者是思考题比较重要 练思维自然是CF比较好了 把我见到的比较好的CF题放上来刷一刷. LINK:Complete the projects 就是说一个 ...

  7. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  8. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  9. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

随机推荐

  1. HDU2087 剪花布条(字符串...半暴力写的?

    一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图案.对于给定的花布条和小饰条,计算一下能从花布条中尽可能剪出几块小饰条来呢? Input输入中含有一些数据,分别是成对出现的花布条和小 ...

  2. 2018最新版 手机号、验证码正则表达式 jq + 小程序

    HTML: <!-- 表单 --> <input class="weui-input" id="tel" type="tel&quo ...

  3. 对xxl-job进行simpleTrigger并动态创建任务扩展

    业务场景 需求上要求能实现quartz的simpleTrigger任务,同时还需要动态的创建任务而非在控制面板上创建,查阅xxl-job官方文档发现simpelTrigger其暂时还躺在to do l ...

  4. Centos7:配置防火墙

    firewalld的基本使用 启动: systemctl start firewalld 关闭:systemctl stop firewalld 查看状态: systemctl status fire ...

  5. js之运算符(算术运算符)

    Javascript中的运算符大多是由标点符号少数由关键字表示.可以根据其操作数的个数进行分类.大多数运算符是一个二元运算符,将两个表达式合成一个比较复杂的表达式.还有需要注意的一点是运算符的优先级, ...

  6. 微信小程序获得高度

    wx.getSystemInfo({ success: (res) => { wx.createSelectorQuery().select('#scrollbox').boundingClie ...

  7. Delphi 监视数据的值

  8. vmware虚拟机安装centos7.3

    vmware准备 CentOS准备,这里下载的是CentOS 7.3CentOS-7-x86_64-Everything-1611.iso 创建新的虚拟机 选择自定义安装 硬件兼容性默认最新的,不用动 ...

  9. 一跃进入C大门

    相对跳转:b,bl 绝对跳转:直接给PC指针赋值

  10. 牛客练习赛46 B 华华送奕奕小礼物 (预处理前缀和,二分)

    链接:https://ac.nowcoder.com/acm/contest/894/B?&headNav=acm 来源:牛客网 华华送奕奕小礼物 时间限制:C/C++ 1秒,其他语言2秒 空 ...