题目描述

给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数。

输入输出格式

输入格式:

输入文件名为factor.in。

共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开。

输出格式:

输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。

输入输出样例

输入样例#1:

1 1 3 1 2
输出样例#1:

3

说明

【数据范围】

对于30% 的数据,有 0 ≤k ≤10 ;

对于50% 的数据,有 a = 1,b = 1;

对于100%的数据,有 0 ≤k ≤1,000,0≤n, m ≤k ,且n + m = k ,0 ≤a ,b ≤1,000,000。

noip2011提高组day2第1题


二项式定理没毛病。

因为C(n,m)计算的时候非常脑残地用了记搜,效率极低,推荐公式计算(毕竟是单个嘛)。

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll; const int mod=,maxn=; int a,b,n,m,k,ans;
int f[maxn][maxn]; int quick(int x,int y){
int ens=;
while(y){
if(y&) ens=1ll*ens*x%mod;
x=1ll*x*x%mod;
y>>=;
}
return ens;
} int calc(int x,int y){
int &ret=f[x][y];
if(ret) return ret;
if(y>x) return ;
if(y==) return ret=;
if(y==) return ret=x;
return ret=(calc(x-,y-)+calc(x-,y))%mod;
} int main(){
scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
ans=calc(k,m);
// printf("%d %d %d %d\n",k,n,m,calc(k,m));
ans=1ll*ans*quick(a,n)%mod;
ans=1ll*ans*quick(b,m)%mod;
printf("%d\n",ans);
return ;
}

luoguP1313 [NOIp2011]计算系数 [组合数学]的更多相关文章

  1. NOIP2011 计算系数

    1计算系数 给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数. [输入] 输入文件名为 factor.in. 共一行,包含 5 个整数,分别为 a,b,k,n,m, ...

  2. [NOIP2011] 计算系数(二项式定理)

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  3. [noip2011]计算系数+二项式定理证明

    大水题,二项式定理即可(忘得差不多了) 对于一个二项式,\((a+b)^n\)的结果为 \(\sum_{k=0}^{k<=n}C_{n}^{k}a^{n-k}b^k\) 证明: 由数学归纳法,当 ...

  4. NOIP2011计算系数;

    #include<cmath> #include<algorithm> #include<stdio.h> #include<iostream> #de ...

  5. LUOGU P1313 计算系数 (组合数学)

    解题思路 比较简单的题,用二项式定理即可. #include<iostream> #include<cstdio> #include<cstring> #inclu ...

  6. NOIP 2011 计算系数

    洛谷 P1313 计算系数 洛谷传送门 JDOJ 1747: [NOIP2011]计算系数 D2 T1 JDOJ传送门 Description 给定一个多项式(ax + by)k,请求出多项式展开后x ...

  7. luoguP1313 计算系数 题解(NOIP2011)

    P1313 计算系数 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cm ...

  8. 一本通1648【例 1】「NOIP2011」计算系数

    1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...

  9. NOIP2011 day2 第一题 计算系数

    计算系数 NOIP2011 day2 第一题 描述 给定一个多项式(ax+by)^k,请求出多项式展开后x^n*y^m项的系数. 输入格式 共一行,包含5 个整数,分别为 a ,b ,k ,n ,m, ...

随机推荐

  1. 【leetcode】941. Valid Mountain Array

    题目如下: Given an array A of integers, return true if and only if it is a valid mountain array. Recall ...

  2. L1、L2损失函数、Huber损失函数

    L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE) L2范数损失函数,也被称为最小平方误差(LSE) L2损失函数 L1损失函数 不是非常的鲁棒(robust) 鲁棒 稳定解 ...

  3. 分布式系统理论基础4:Paxos

    本文转自:https://www.cnblogs.com/bangerlee/p/5655754.html 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到 ...

  4. php开发面试题---php缓存总结

    php开发面试题---php缓存总结 一.总结 一句话总结: 缓存主要分本地缓存和分布式缓存两种 可以用分布式本地缓存:把那些常用的.不容易变的页面.数据都存下来 1.常用的缓存构架? 分布式本地缓存 ...

  5. 数据库SQL调优的几种方式(转)

    原文地址:https://blog.csdn.net/u010520146/article/details/81161762 在项目中,SQL的调优对项目的性能来讲至关重要,所有掌握常见的SQL调优方 ...

  6. VTemplate模板引擎的使用--入门篇

    1.什么是VTemplate模板引擎? 详细请点击这里. 2.怎样使用VTemplate模板引擎? 第1步: 下载VTemplate模板引擎的最新库文件(从这里下载),下载回来后将库文件引入到你的项目 ...

  7. 弹出框中的AJAX分页

    $(function() { $("body").on("click",".set-topic",function(){ /*获取所有题目接 ...

  8. 25. 服务器性能监控之nmon工具介绍

    nmon介绍: nmon是一个简单的性能监测工具,可以监测CPU.内存.网络等的使用情况. 步骤: 1.下载nmon(根据你的操作系统下载),地址 2.nmon文件部署到服务器中 3.启动nmon(注 ...

  9. python基础【第七篇】

    字典 列表可以存储大量的数据类型,但是只能按照顺序存储,数据与数据之间关联性不强. 所以咱们需要引入一种容器型的数据类型,解决上面的问题,这就需要dict字典. 字典(dict)是python中唯⼀的 ...

  10. 【足迹C++primer】47、Moving Objects(2)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/cutter_point/article/details/37954805 Moving Object ...