题目描述

给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数。

输入输出格式

输入格式:

输入文件名为factor.in。

共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开。

输出格式:

输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。

输入输出样例

输入样例#1:

1 1 3 1 2
输出样例#1:

3

说明

【数据范围】

对于30% 的数据,有 0 ≤k ≤10 ;

对于50% 的数据,有 a = 1,b = 1;

对于100%的数据,有 0 ≤k ≤1,000,0≤n, m ≤k ,且n + m = k ,0 ≤a ,b ≤1,000,000。

noip2011提高组day2第1题


二项式定理没毛病。

因为C(n,m)计算的时候非常脑残地用了记搜,效率极低,推荐公式计算(毕竟是单个嘛)。

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; typedef long long ll; const int mod=,maxn=; int a,b,n,m,k,ans;
int f[maxn][maxn]; int quick(int x,int y){
int ens=;
while(y){
if(y&) ens=1ll*ens*x%mod;
x=1ll*x*x%mod;
y>>=;
}
return ens;
} int calc(int x,int y){
int &ret=f[x][y];
if(ret) return ret;
if(y>x) return ;
if(y==) return ret=;
if(y==) return ret=x;
return ret=(calc(x-,y-)+calc(x-,y))%mod;
} int main(){
scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
ans=calc(k,m);
// printf("%d %d %d %d\n",k,n,m,calc(k,m));
ans=1ll*ans*quick(a,n)%mod;
ans=1ll*ans*quick(b,m)%mod;
printf("%d\n",ans);
return ;
}

luoguP1313 [NOIp2011]计算系数 [组合数学]的更多相关文章

  1. NOIP2011 计算系数

    1计算系数 给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数. [输入] 输入文件名为 factor.in. 共一行,包含 5 个整数,分别为 a,b,k,n,m, ...

  2. [NOIP2011] 计算系数(二项式定理)

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  3. [noip2011]计算系数+二项式定理证明

    大水题,二项式定理即可(忘得差不多了) 对于一个二项式,\((a+b)^n\)的结果为 \(\sum_{k=0}^{k<=n}C_{n}^{k}a^{n-k}b^k\) 证明: 由数学归纳法,当 ...

  4. NOIP2011计算系数;

    #include<cmath> #include<algorithm> #include<stdio.h> #include<iostream> #de ...

  5. LUOGU P1313 计算系数 (组合数学)

    解题思路 比较简单的题,用二项式定理即可. #include<iostream> #include<cstdio> #include<cstring> #inclu ...

  6. NOIP 2011 计算系数

    洛谷 P1313 计算系数 洛谷传送门 JDOJ 1747: [NOIP2011]计算系数 D2 T1 JDOJ传送门 Description 给定一个多项式(ax + by)k,请求出多项式展开后x ...

  7. luoguP1313 计算系数 题解(NOIP2011)

    P1313 计算系数 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cm ...

  8. 一本通1648【例 1】「NOIP2011」计算系数

    1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...

  9. NOIP2011 day2 第一题 计算系数

    计算系数 NOIP2011 day2 第一题 描述 给定一个多项式(ax+by)^k,请求出多项式展开后x^n*y^m项的系数. 输入格式 共一行,包含5 个整数,分别为 a ,b ,k ,n ,m, ...

随机推荐

  1. php操作redis--生存时间篇

    常用函数:expireAt,expire,ttl 应用场景:登陆生效时间,验证码有效时间等 设置某个键的有效时间,如当天有效(以时间戳的方式设置) $expireTime = mktime('23', ...

  2. LUOGU P2617 Dynamic Rankings(树状数组套主席树)

    传送门 解题思路 动态区间第\(k\)大,树状数组套主席树模板.树状数组的每个位置的意思的是每棵主席树的根,维护的是一个前缀和.然后询问的时候\(log\)个点一起做前缀和,一起移动.时空复杂度\(O ...

  3. Notepad++ 连接 FTP 实现编辑 Linux文件

    下载并安装插件 github 下载 :https://github.com/ashkulz/NppFTP/releases/ 安装过程 将下载后解压的文件夹中的 NppFTP.dll 文件,拷贝到 n ...

  4. MySQL高级学习笔记(七):MySql主从复制

    文章目录 复制的基本原理 slave会从master读取binlog来进行数据同步 三步骤+原理图 复制的基本原则 复制的最大问题 一主一从常见配置 mysql版本一致且后台以服务运行(双方能够pin ...

  5. Intellij IDEA 安装Scala插件 + 创建Scala项目

    一.IDEA  2018 Ultimate edition (旗舰破解版下载地址) 百度网盘地址:https://pan.baidu.com/s/1d9ArRH6adhDUGiJvRqnZMw 二.I ...

  6. Pandas Series数据结构基本操作

    >>> import pandas >>> import numpy as np >>> from pandas import Series,Da ...

  7. 转 笔记本无线和有线的MAC地址修改

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/xueqiang03/article/details/80741734无线网卡的mac地址在出厂时就被 ...

  8. python base64编码实现

    alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def encode(b ...

  9. Kotlin 和 Flutter 对于开发者究竟意味着什么?

    更多阿里P7架构进阶学习视频:阿里P7Android架构进阶学习视频回放近些年来,编程语言流行度的变化其实不大,在 TIOBE 编程语言排行榜上,Java.C.C++ 固若金山,也就只有 Python ...

  10. HTTP学习笔记01

    参考内容: 关于HTTP协议,一篇就够了 理解HTTP协议 HTTP 协议入门 超文本传输协议- 维基百科,自由的百科全书 HTTP 昨天通过读文档.读博文.看教程学习了一下HTTP协议,发现真是“天 ...