ssd_mobilenet_demo
操作系统:windows 10 64位
内存:8G
GPU:Nvidia MX 150
Tensorflow: 1.4
1、安装python
Anaconda3-5.0.1 ,默认python版本(3.6.3)
2、安装tensorflow
pip install --upgrade tensorflow
conda install pip #更新pip
pip install --upgrade tensorflow-gpu
CUDA® Toolkit 8.0, 需要注意最新版9.1不支持tensorflow 1.4版本;
cuDNN v6.0,7.0不支持tensorflow 1.4版本,现在cuDNN需要先注册成为NVIDIA开发者,下载后将cuDNN中对应文件夹下的.dll文件分别复制到CUDA安装目录对应文件夹下;
对应的显卡驱动,如果驱动较新,在安装CUDA的时候会有提示可能不兼容,可以无视。
3、测试gpu版安装好了没有
improt tensorflow as tf
hello = tf.constant('hello')
sess = tf.Session()
print(sess.run(hello)) 当输出hello则装好tensorflow from tensorflow.python.client import device_lib
print(device_lib.list_local_devices()) 当输出:
Sample Output
[name: "/cpu:0" device_type: "CPU" memory_limit:
name: "/gpu:0" device_type: "GPU" .............GeForce GTX 1070
4、下载api
https://github.com/tensorflow/models
5、protobuf配置
https://github.com/google/protobuf/releases 网站中选择windows 版本(最下面),解压后将bin文件夹中的【protoc.exe】放到C:\Windows
在models\research\目录下打开命令行窗口,输入:
# From tensorflow/models/
protoc object_detection/protos/*.proto --python_out=.
在这一步有时候会出错,可以尝试把/*.proto 这部分改成文件夹下具体的文件名,一个一个试,每运行一个,文件夹下应该出现对应的.py结尾的文件。不报错即可。
6、环境变量
models/research/ 及 models/research/slim 添加进环境变量
7、测试环境
python object_detection/builders/model_builder_test.py
注意 :如果出现no model name object_api这个东东,就在D:\anaconda\anaconda3.4.2.0\Lib\site-packages目录下面新建一个my_objection.pth文件,文件内容就是这两个路径,如下图:

8、object_detection_tutorial.ipynb
代码简化了一些。
# coding: utf-8
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image if tf.__version__ < '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') # This is needed to display the images.
get_ipython().magic('matplotlib inline') # This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..") from utils import label_map_util
from utils import visualization_utils as vis_util # 下载模型名,设置对应的参数
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' # 训练好的模型,用来检测
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' # 标签文件,记录了哪些标签需要识别
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') # 类别数目,根据实际修改
NUM_CLASSES = 90 # ## 下载上面说的模型(不用改)
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd()) #将训练完的载入内存(不用改)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='') # ## 载入标签map(不用改)
# Label maps map indices to category names, so that when our convolution network predicts `5`,
we know that this corresponds to `airplane`.
Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories) def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8) """
检测部分
"""
# 目标文件夹名
PATH_TO_TEST_IMAGES_DIR = 'test_images'
# 源码中test_images文件夹下就两张image,名字分别为image1.jpg和image2.jpg
# 如果想用自己的image,有5张图片,分别为hello1.jpg.....hello5.jpg可以改成:
# TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'hello{}.jpg'.format(i)) for i in range(1, 6) ]
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ] # 设置输出图像的英尺
IMAGE_SIZE = (12, 8) #运行,进行检测
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
ssd_mobilenet_demo的更多相关文章
随机推荐
- 阶段1 语言基础+高级_1-3-Java语言高级_08-JDK8新特性_第2节 Stream流式思想概述_3_流式思想概述
- postman的断言/环境变量的处理
我们做接口测试都会有一个断言操作:也有一个变量被频繁使用,这时候可以用环境变量来处理 目录 1.postman之断言 2.postman之环境变量 1.postman之断言 同样以postman的登录 ...
- Vue中解决路由切换,页面不更新的实用方法
前言:vue-router的切换不同于传统的页面的切换.路由之间的切换,其实就是组件之间的切换,不是真正的页面切换.这也会导致一个问题,就是引用相同组件的时候,会导致该组件无法更新,也就是我们口中的页 ...
- 类HashSet
/* * Collection * * List * 有序(存储顺序和取出顺序一致),可以重复 * * Set * 无序(存储顺序和取出顺序不一致),唯一 * * */ import java.uti ...
- 类BigInteger
BigInteger类 可以让超过Integer范围内的数据进行运算 构造方法 public BigIntege(String val); package com.jacky; import java ...
- usb接口类型 简单分类辨识
usb接口类型 简单分类辨识 - [相似百科] 庆欣 0.0 4 人赞同了该文章 1. 先放图,随着越来越多的接触智能设备,会遇到各种各样的usb接口,对于很多人来说,接口类型只有:usb接口,安卓接 ...
- C#实体类生成Create Table SQL
using System; using System.Collections.Generic; using System.Text; using System.Reflection; namespac ...
- Java JDK安装教程以及JDK多版本间快速切换配置
原本想自己写一篇,结果在网上发现一篇写的特别好的博文,大家可以去原网址围观浏览加点赞, 只是搬运工+迷弟. 原文地址:https://blog.csdn.net/qq_38916130/article ...
- VUe.js 父组件向子组件中传值及方法
父组件向子组件中传值 1. Vue实例可以看做是大的组件,那么在其内部定义的私有组件与这个实例之间就出现了父子组件的对应关系. 2. 父子组件在默认的情况下,子组件是无妨访问到父组件中的数据的,所以 ...
- 【Python—字典的用法】创建字典的3种方法
#创建一个空字典 empty_dict = dict() print(empty_dict) #用**kwargs可变参数传入关键字创建字典 a = dict(one=1,two=2,three=3) ...