在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性。但是还是有其他值得优化的点,文本就关注于Nature DQN的一个改进版本: Double DQN算法(以下简称DDQN)。

    本章内容主要参考了ICML 2016的deep RL tutorial和DDQN的论文<Deep Reinforcement Learning with Double Q-learning>。

1. DQN的目标Q值计算问题

    在DDQN之前,基本上所有的目标Q值都是通过贪婪法直接得到的,无论是Q-Learning, DQN(NIPS 2013)还是 Nature DQN,都是如此。比如对于Nature DQN,虽然用了两个Q网络并使用目标Q网络计算Q值,其第j个样本的目标Q值的计算还是贪婪法得到的,计算入下式:$$y_j= \begin{cases} R_j& {is\_end_j\; is \;true}\\ R_j + \gamma\max_{a'}Q'(\phi(S'_j),A'_j,w') & {is\_end_j \;is\; false} \end{cases}$$

    使用max虽然可以快速让Q值向可能的优化目标靠拢,但是很容易过犹不及,导致过度估计(Over Estimation),所谓过度估计就是最终我们得到的算法模型有很大的偏差(bias)。为了解决这个问题, DDQN通过解耦目标Q值动作的选择和目标Q值的计算这两步,来达到消除过度估计的问题。

2. DDQN的算法建模

    DDQN和Nature DQN一样,也有一样的两个Q网络结构。在Nature DQN的基础上,通过解耦目标Q值动作的选择和目标Q值的计算这两步,来消除过度估计的问题。

    在上一节里,Nature DQN对于非终止状态,其目标Q值的计算式子是:$$y_j= R_j + \gamma\max_{a'}Q'(\phi(S'_j),A'_j,w')$$

    在DDQN这里,不再是直接在目标Q网络里面找各个动作中最大Q值,而是先在当前Q网络中先找出最大Q值对应的动作,即$$a^{max}(S'_j, w) = \arg\max_{a'}Q(\phi(S'_j),a,w)$$

    然后利用这个选择出来的动作$a^{max}(S'_j, w) $在目标网络里面去计算目标Q值。即:$$y_j = R_j + \gamma Q'(\phi(S'_j),a^{max}(S'_j, w),w')$$

    综合起来写就是:$$y_j = R_j + \gamma Q'(\phi(S'_j),\arg\max_{a'}Q(\phi(S'_j),a,w),w')$$

    除了目标Q值的计算方式以外,DDQN算法和Nature DQN的算法流程完全相同。

3. DDQN算法流程

    这里我们总结下DDQN的算法流程,和Nature DQN的区别仅仅在步骤2.f中目标Q值的计算。

    算法输入:迭代轮数$T$,状态特征维度$n$, 动作集$A$, 步长$\alpha$,衰减因子$\gamma$, 探索率$\epsilon$, 当前Q网络$Q$,目标Q网络$Q'$, 批量梯度下降的样本数$m$,目标Q网络参数更新频率$C$。

    输出:Q网络参数

    1. 随机初始化所有的状态和动作对应的价值$Q$.  随机初始化当前Q网络的所有参数$w$,初始化目标Q网络$Q'$的参数$w' = w$。清空经验回放的集合$D$。

    2. for i from 1 to T,进行迭代。

      a) 初始化S为当前状态序列的第一个状态, 拿到其特征向量$\phi(S)$

      b) 在Q网络中使用$\phi(S)$作为输入,得到Q网络的所有动作对应的Q值输出。用$\epsilon-$贪婪法在当前Q值输出中选择对应的动作$A$

      c) 在状态$S$执行当前动作$A$,得到新状态$S'$对应的特征向量$\phi(S')和奖励$R$,是否终止状态is_end

      d) 将$\{\phi(S),A,R,\phi(S'),is\_end\}$这个五元组存入经验回放集合$D$

      e) $S=S'$

      f)  从经验回放集合$D$中采样$m$个样本$\{\phi(S_j),A_j,R_j,\phi(S'_j),is\_end_j\}, j=1,2.,,,m$,计算当前目标Q值$y_j$:$$y_j= \begin{cases} R_j& {is\_end_j\; is \;true}\\ R_j + \gamma Q'(\phi(S'_j),\arg\max_{a'}Q(\phi(S'_j),a,w),w')& {is\_end_j\; is \;false} \end{cases}$$

      g)  使用均方差损失函数$\frac{1}{m}\sum\limits_{j=1}^m(y_j-Q(\phi(S_j),A_j,w))^2$,通过神经网络的梯度反向传播来更新Q网络的所有参数$w$

      h) 如果T%C=1,则更新目标Q网络参数$w'=w$

      i) 如果$S'$是终止状态,当前轮迭代完毕,否则转到步骤b)

      注意,上述第二步的f步和g步的Q值计算也都需要通过Q网络计算得到。另外,实际应用中,为了算法较好的收敛,探索率$\epsilon$需要随着迭代的进行而变小。

4. DDQN算法实例 

    下面我们用一个具体的例子来演示DQN的应用。仍然使用了OpenAI Gym中的CartPole-v0游戏来作为我们算法应用。CartPole-v0游戏的介绍参见这里。它比较简单,基本要求就是控制下面的cart移动使连接在上面的pole保持垂直不倒。这个任务只有两个离散动作,要么向左用力,要么向右用力。而state状态就是这个cart的位置和速度, pole的角度和角速度,4维的特征。坚持到200分的奖励则为过关。

    完整的代码参见我的github: https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/ddqn.py

    这里我们重点关注DDQN和上一节的Nature DQN的代码的不同之处。代码只有一个地方不一样,就是计算目标Q值的时候,如下:

    # Step 2: calculate y
y_batch = []
current_Q_batch = self.Q_value.eval(feed_dict={self.state_input: next_state_batch})
max_action_next = np.argmax(current_Q_batch, axis=1)
target_Q_batch = self.target_Q_value.eval(feed_dict={self.state_input: next_state_batch}) for i in range(0,BATCH_SIZE):
done = minibatch[i][4]
if done:
y_batch.append(reward_batch[i])
else :
target_Q_value = target_Q_batch[i, max_action_next[i]]
y_batch.append(reward_batch[i] + GAMMA * target_Q_value)

    而之前的Nature  DQN这里的目标Q值计算是如下这样的:

 # Step 2: calculate y
y_batch = []
Q_value_batch = self.target_Q_value.eval(feed_dict={self.state_input:next_state_batch})
for i in range(0,BATCH_SIZE):
done = minibatch[i][4]
if done:
y_batch.append(reward_batch[i])
else :
y_batch.append(reward_batch[i] + GAMMA * np.max(Q_value_batch[i]))

    除了上面这部分的区别,两个算法的代码完全相同。

5. DDQN小结

    DDQN算法出来以后,取得了比较好的效果,因此得到了比较广泛的应用。不过我们的DQN仍然有其他可以优化的点,如上一篇最后讲到的: 随机采样的方法好吗?按道理经验回放里不同样本的重要性是不一样的,TD误差大的样本重要程度应该高。针对这个问题,我们在下一节的Prioritised Replay DQN中讨论。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

强化学习(十)Double DQN (DDQN)的更多相关文章

  1. 【转载】 强化学习(十)Double DQN (DDQN)

    原文地址: https://www.cnblogs.com/pinard/p/9778063.html ------------------------------------------------ ...

  2. 强化学习(十六) 深度确定性策略梯度(DDPG)

    在强化学习(十五) A3C中,我们讨论了使用多线程的方法来解决Actor-Critic难收敛的问题,今天我们不使用多线程,而是使用和DDQN类似的方法:即经验回放和双网络的方法来改进Actor-Cri ...

  3. 强化学习(十五) A3C

    在强化学习(十四) Actor-Critic中,我们讨论了Actor-Critic的算法流程,但是由于普通的Actor-Critic算法难以收敛,需要一些其他的优化.而Asynchronous Adv ...

  4. 强化学习(十四) Actor-Critic

    在强化学习(十三) 策略梯度(Policy Gradient)中,我们讲到了基于策略(Policy Based)的强化学习方法的基本思路,并讨论了蒙特卡罗策略梯度reinforce算法.但是由于该算法 ...

  5. 强化学习(十九) AlphaGo Zero强化学习原理

    在强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)中,我们讨论了MCTS的原理和在棋类中的基本应用.这里我们在前一节MCTS的基础上,讨论下DeepMind的AlphaGo Zero强化学 ...

  6. 强化学习(十二) Dueling DQN

    在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN.本章内容主要参考了I ...

  7. 【论文研读】强化学习入门之DQN

    最近在学习斯坦福2017年秋季学期的<强化学习>课程,感兴趣的同学可以follow一下,Sergey大神的,有英文字幕,语速有点快,适合有一些基础的入门生. 今天主要总结上午看的有关DQN ...

  8. 强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)

    在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna.本文我们讨论另一种非常流行的集合基于模型与不基 ...

  9. 强化学习系列之:Deep Q Network (DQN)

    文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3. ...

随机推荐

  1. volume.go

    package)) ) ,) ) );) ,     } }

  2. BZOJ_4864_[BeiJing 2017 Wc]神秘物质_Splay

    BZOJ4864_[BeiJing 2017 Wc]神秘物质_Splay Description 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天 ...

  3. CSS 盒模型与box-sizing

    一.盒模型 一个web页面由许多html元素组成,而每一个html元素都可以表示为一个矩形的盒子,CSS盒模型正是描述这些矩形盒子的存在. MDN的描述: When laying out a docu ...

  4. 【移动端web】软键盘兼容问题

    软键盘收放事件 这周几天遇到了好几个关于web移动端兼容性的问题.并花了很长时间去研究如何处理这几种兼容问题. 这次我们来说说关于移动端软键盘的js处理吧. 一般情况下,前端是无法监控软键盘到底是弹出 ...

  5. 再不了解PostgreSQL,你就晚了之PostgreSQL主从流复制部署

    前言 在MySQL被收购之后,虽然有其替代品为: MariaDB,但是总感觉心里有点膈应.大家发现了另一款开源的数据库: PostgreSQL. 虽然centos自带版本9.2也可以用,但是最近的几次 ...

  6. CSS3 之 童年的纸飞机

    今天我们来折纸飞机(可以飞出去的那种哦) 基本全用css来实现,只有一小部分的js 首先看一下飞机的构造 灰色区域为可折叠区域 白色区域为机身 三角形由border画出来的再经过各种平移翻转变成上图 ...

  7. 如何查找元素对应事件的js代码,检测定位js事件

    比如一张图片当鼠标放到上面时,图片改变.想找到这个事件对应的js代码,假设另存为html之后,文件夹中有.js文件. 如果你会调试,可以用打开浏览器的调试功能,以chrome为例,按F12打开调试窗口 ...

  8. 深入理解pandas读取excel,txt,csv文件等命令

    pandas读取文件官方提供的文档 在使用pandas读取文件之前,必备的内容,必然属于官方文档,官方文档查阅地址 http://pandas.pydata.org/pandas-docs/versi ...

  9. Gradle入门到实战(二) — ImageOptimization安卓图片转换压缩插件

    上一篇我们了解了Gradle的各个方面,本篇介绍一款安卓图片优化转换插件,目前已在项目中使用,可一键批量转换压缩图片,webp转换与png/jpg压缩就是那么简单 GitHub项目地址:ImageOp ...

  10. 基于Vue2-Calendar改进的日历组件(含中文使用说明)

    一,前言 我是刚学Vue的菜鸟,在使用过程中需要用到日历控件,由于项目中原来是用jQuery写的,因此用了bootstarp的日历控件,但是配合Vue实在有点蛋疼,不够优雅…… 于是网上搜了好久找到了 ...