Python内置方法的时间复杂度
转载自:http://www.orangecube.NET/Python-time-complexity
本页面涵盖了Python中若干方法的时间复杂度(或者叫“大欧”,“Big O”)。该时间复杂度的计算基于当前(译注:至少是2011年之前)的CPython实现。其他Python的实现(包括老版本或者尚在开发的CPython实现)可能会在性能表现上有些许小小的差异,但一般不超过一个O(log n)项。
本文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量。
列表(list)
以完全随机的列表考虑平均情况。
列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque(双向队列)
| 操作 | 平均情况 | 最坏情况 |
| 复制 | O(n) | O(n) |
| append[注1] | O(1) | O(1) |
| 插入 | O(n) | O(n) |
| 取元素 | O(1) | O(1) |
| 更改元素 | O(1) | O(1) |
| 删除元素 | O(n) | O(n) |
| 遍历 | O(n) | O(n) |
| 取切片 | O(k) | O(k) |
| 删除切片 | O(n) | O(n) |
| 更改切片 | O(k+n) | O(k+n) |
| extend[注1] | O(k) | O(k) |
| 排序 | O(n log n) | O(n log n) |
| 列表乘法 | O(nk) | O(nk) |
| x in s | O(n) | |
| min(s), max(s) | O(n) | |
| 计算长度 | O(1) | O(1) |
双向队列(collections.deque)
deque (double-ended queue,双向队列)是以双向链表的形式实现的 (Well, a list of arrays rather than objects, for greater efficiency)。双向队列的两端都是可达的,但从查找队列中间的元素较为缓慢,增删元素就更慢了。
| 操作 | 平均情况 | 最坏情况 |
| 复制 | O(n) | O(n) |
| append | O(1) | O(1) |
| appendleft | O(1) | O(1) |
| pop | O(1) | O(1) |
| popleft | O(1) | O(1) |
| extend | O(k) | O(k) |
| extendleft | O(k) | O(k) |
| rotate | O(k) | O(k) |
| remove | O(n) | O(n) |
集合(set)
未列出的操作可参考 dict —— 二者的实现非常相似。
| 操作 | 平均情况 | 最坏情况 |
| x in s | O(1) | O(n) |
| 并集 s|t | O(len(s)+len(t)) | |
| 交集 s&t | O(min(len(s), len(t)) | O(len(s) * len(t)) |
| 差集 s-t | O(len(s)) | |
| s.difference_update(t) | O(len(t)) | |
| 对称差集 s^t | O(len(s)) | O(len(s) * len(t)) |
| s.symmetric_difference_update(t) | O(len(t)) | O(len(t) * len(s)) |
由源码得知,求差集(s-t,或s.difference(t))运算与更新为差集(s.difference_uptate(t))运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。
集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。
字典(dict)
下列字典的平均情况基于以下假设:
1. 对象的散列函数足够撸棒(robust),不会发生冲突。
2. 字典的键是从所有可能的键的集合中随机选择的。
小窍门:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。
| 操作 | 平均情况 | 最坏情况 |
| 复制[注2] | O(n) | O(n) |
| 取元素 | O(1) | O(n) |
| 更改元素[注1] | O(1) | O(n) |
| 删除元素 | O(1) | O(n) |
| 遍历[注2] | O(n) | O(n) |
注:
[1] = These operations rely on the “Amortized” part of “Amortized Worst Case”. Individual actions may take surprisingly long, depending on the history of the container.
[2] = For these operations, the worst case n is the maximum size the container ever achieved, rather than just the current size. For example, if N objects are added to a dictionary, then N-1 are deleted, the dictionary will still be sized for N objects (at least) until another insertion is made.
Python内置方法的时间复杂度的更多相关文章
- Python内置方法的时间复杂度(转)
原文:http://www.orangecube.net/python-time-complexity 本文翻译自Python Wiki本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Pyt ...
- python 内置方法的时间复杂度
好文,非常值得参考 http://www.orangecube.net/python-time-complexity
- Python内置方法详解
1. 字符串内置方法详解 为何要有字符串?相对于元组.列表等,对于唯一类型的定义,字符串具有最简单的形式. 字符串往往以变量接收,变量名. 可以查看所有的字符串的内置方法,如: 1> count ...
- 匿名函数 python内置方法(max/min/filter/map/sorted/reduce)面向过程编程
目录 函数进阶三 1. 匿名函数 1. 什么是匿名函数 2. 匿名函数的语法 3. 能和匿名函数联用的一些方法 2. python解释器内置方法 3. 异常处理 面向过程编程 函数进阶三 1. 匿名函 ...
- 时间复杂度Big O以及Python 内置函数的时间复杂度
声明:本文部分内容摘自 原文 本文翻译自Python Wiki 本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧",&qu ...
- python 内置方法、数据序列化
abc(*args, **kwargs) 取绝对值 def add(a,b,f): return f(a)+f(b) res = add(3,-6,abs) print(res) all(*args, ...
- 基于python内置方法进行代码混淆
0x00 动态加载模块 在python脚本中,直接使用import os.import subprocess或from os import system这种方法很容易被规则检测,即使使用其它执行命令的 ...
- python内置方法
1. 简介 本指南归纳于我的几个月的博客,主题是 魔法方法 . 什么是魔法方法呢?它们在面向对象的Python的处处皆是.它们是一些可以让你对类添加"魔法"的特殊方法. 它们经常是 ...
- Python几种数据结构内置方法的时间复杂度
参考:https://blog.csdn.net/baoli1008/article/details/48059623 注:下文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量. 1 ...
随机推荐
- Python-字符串及列表操作-Day2
1.数据类型 1.1 变量引出数据类型 变量:用来记录状态变量值的变化就是状态的变化,程序运行的本质就是来处理一系列的变化 1.2 五大基本数据类型: 数字 字符串 列表 元组 字典 1.2.1 数字 ...
- AutoCAD中的扩展字典及扩展记录(C#)
在学习CAD扩展记录的过程中,遇到了一些问题,也积累了一些经验,现在给大家分享一些我的学习心得.在学习扩展字典之前需要读者了解cad的组码,也就是DxfCode.感兴趣的也可以了解一下扩展数据的相关内 ...
- 新概念英语(1-71)He's awful!
He's awful!How did Pauline answer the telephone at the nine o'clock?A:What's Ron Marston like, Pauli ...
- 关于 Integer 值比较的问题
今天刚好遇到这样的问题,别的不说,先上代码 public class TestInteger { public static void main(final String[] args) { fina ...
- python 类知识点总结
python 类知识点总结 面向对象思想: 1.设计的时候,一定要明确应用场景 2.由对象分析定义类的时候,找不到共同特征和技能不用强求 1.简述类.对象.实例化.实例这些名词的含义: 类:从一组对象 ...
- python--socket粘包
socket粘包 1 什么是粘包 须知:只有TCP有粘包现象,UDP永远不会粘包,首先需要掌握一个socket收发消息的原理, 所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少 ...
- [翻译] softmax和softmax_cross_entropy_with_logits的区别
翻译自:https://stackoverflow.com/questions/34240703/whats-the-difference-between-softmax-and-softmax-cr ...
- python常用的一些东西——sys、os等(转)
1.常用内置函数:(不用import就可以直接使用) help(obj) 在线帮助, obj可是任何类型 callable(obj) 查看一个obj是不是可以像函数一样调用 ...
- canvas图像模糊以及图像变形问题
问题:有时用canvas作图时发现图像会出现模糊不清晰的问题,甚至做出来的图呈现出的效果与我们给的数值所应该呈现出的效果不一致 原因:当你在支持html5 canvas的浏览器下查看页面的时候,can ...
- 瞎扯设计模式1:单例模式 饿汉模式 懒汉模式 线程安全的单例 singleton 设计模式 java
[原创声明]此文为本人原创,欢迎转载,转载请注明出处,作者链接~ http://www.cnblogs.com/m-yb/p/8833085.html 单例很常用,面试也经常被问,如:不用自定义锁怎么 ...