Python内置方法的时间复杂度
转载自:http://www.orangecube.NET/Python-time-complexity
本页面涵盖了Python中若干方法的时间复杂度(或者叫“大欧”,“Big O”)。该时间复杂度的计算基于当前(译注:至少是2011年之前)的CPython实现。其他Python的实现(包括老版本或者尚在开发的CPython实现)可能会在性能表现上有些许小小的差异,但一般不超过一个O(log n)项。
本文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量。
列表(list)
以完全随机的列表考虑平均情况。
列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque(双向队列)
| 操作 | 平均情况 | 最坏情况 |
| 复制 | O(n) | O(n) |
| append[注1] | O(1) | O(1) |
| 插入 | O(n) | O(n) |
| 取元素 | O(1) | O(1) |
| 更改元素 | O(1) | O(1) |
| 删除元素 | O(n) | O(n) |
| 遍历 | O(n) | O(n) |
| 取切片 | O(k) | O(k) |
| 删除切片 | O(n) | O(n) |
| 更改切片 | O(k+n) | O(k+n) |
| extend[注1] | O(k) | O(k) |
| 排序 | O(n log n) | O(n log n) |
| 列表乘法 | O(nk) | O(nk) |
| x in s | O(n) | |
| min(s), max(s) | O(n) | |
| 计算长度 | O(1) | O(1) |
双向队列(collections.deque)
deque (double-ended queue,双向队列)是以双向链表的形式实现的 (Well, a list of arrays rather than objects, for greater efficiency)。双向队列的两端都是可达的,但从查找队列中间的元素较为缓慢,增删元素就更慢了。
| 操作 | 平均情况 | 最坏情况 |
| 复制 | O(n) | O(n) |
| append | O(1) | O(1) |
| appendleft | O(1) | O(1) |
| pop | O(1) | O(1) |
| popleft | O(1) | O(1) |
| extend | O(k) | O(k) |
| extendleft | O(k) | O(k) |
| rotate | O(k) | O(k) |
| remove | O(n) | O(n) |
集合(set)
未列出的操作可参考 dict —— 二者的实现非常相似。
| 操作 | 平均情况 | 最坏情况 |
| x in s | O(1) | O(n) |
| 并集 s|t | O(len(s)+len(t)) | |
| 交集 s&t | O(min(len(s), len(t)) | O(len(s) * len(t)) |
| 差集 s-t | O(len(s)) | |
| s.difference_update(t) | O(len(t)) | |
| 对称差集 s^t | O(len(s)) | O(len(s) * len(t)) |
| s.symmetric_difference_update(t) | O(len(t)) | O(len(t) * len(s)) |
由源码得知,求差集(s-t,或s.difference(t))运算与更新为差集(s.difference_uptate(t))运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。
集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。
字典(dict)
下列字典的平均情况基于以下假设:
1. 对象的散列函数足够撸棒(robust),不会发生冲突。
2. 字典的键是从所有可能的键的集合中随机选择的。
小窍门:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。
| 操作 | 平均情况 | 最坏情况 |
| 复制[注2] | O(n) | O(n) |
| 取元素 | O(1) | O(n) |
| 更改元素[注1] | O(1) | O(n) |
| 删除元素 | O(1) | O(n) |
| 遍历[注2] | O(n) | O(n) |
注:
[1] = These operations rely on the “Amortized” part of “Amortized Worst Case”. Individual actions may take surprisingly long, depending on the history of the container.
[2] = For these operations, the worst case n is the maximum size the container ever achieved, rather than just the current size. For example, if N objects are added to a dictionary, then N-1 are deleted, the dictionary will still be sized for N objects (at least) until another insertion is made.
Python内置方法的时间复杂度的更多相关文章
- Python内置方法的时间复杂度(转)
原文:http://www.orangecube.net/python-time-complexity 本文翻译自Python Wiki本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Pyt ...
- python 内置方法的时间复杂度
好文,非常值得参考 http://www.orangecube.net/python-time-complexity
- Python内置方法详解
1. 字符串内置方法详解 为何要有字符串?相对于元组.列表等,对于唯一类型的定义,字符串具有最简单的形式. 字符串往往以变量接收,变量名. 可以查看所有的字符串的内置方法,如: 1> count ...
- 匿名函数 python内置方法(max/min/filter/map/sorted/reduce)面向过程编程
目录 函数进阶三 1. 匿名函数 1. 什么是匿名函数 2. 匿名函数的语法 3. 能和匿名函数联用的一些方法 2. python解释器内置方法 3. 异常处理 面向过程编程 函数进阶三 1. 匿名函 ...
- 时间复杂度Big O以及Python 内置函数的时间复杂度
声明:本文部分内容摘自 原文 本文翻译自Python Wiki 本文基于GPL v2协议,转载请保留此协议. 本页面涵盖了Python中若干方法的时间复杂度(或者叫"大欧",&qu ...
- python 内置方法、数据序列化
abc(*args, **kwargs) 取绝对值 def add(a,b,f): return f(a)+f(b) res = add(3,-6,abs) print(res) all(*args, ...
- 基于python内置方法进行代码混淆
0x00 动态加载模块 在python脚本中,直接使用import os.import subprocess或from os import system这种方法很容易被规则检测,即使使用其它执行命令的 ...
- python内置方法
1. 简介 本指南归纳于我的几个月的博客,主题是 魔法方法 . 什么是魔法方法呢?它们在面向对象的Python的处处皆是.它们是一些可以让你对类添加"魔法"的特殊方法. 它们经常是 ...
- Python几种数据结构内置方法的时间复杂度
参考:https://blog.csdn.net/baoli1008/article/details/48059623 注:下文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量. 1 ...
随机推荐
- Python学习之dict和set
#coding=utf-8 # dict dict= {'bob': 40, 'andy': 30} print dict['bob'] # 通过dict提供的get方法,如果key不存在,可以返回N ...
- 深入理解Javascript单线程谈Event Loop
假如面试回答js的运行机制时,你可能说出这么一段话:"Javascript的事件分同步任务和异步任务,遇到同步任务就放在执行栈中执行,而碰到异步任务就放到任务队列之中,等到执行栈执行完毕之后 ...
- 错误解决:HibernateSystemException-HHH000142: Javassist Enhancement failed
今天做项目报了一个错误 错误的原因是: 有级联查询的时候,一对多,多对一配置时要考虑默认延迟加载的问题,需要把延迟加载关闭. 然后就能正确查询出结果了 补充知识: 延迟加载表现在:比如:我们要查询 ...
- Python中字符串颜色
格式:\033[显示方式;前景色;背景色m 说明: 前景色 背景色 颜色 --------------------------------------- 30 40 黑色 31 41 红色 32 42 ...
- vi和vim编辑器
VI vi是一种计算机文本编辑器,由美国计算机科学家比尔·乔伊(Bill Joy)完成编写,并于1976年以BSD协议授权发布. VIM Vim是从vi发展出来的一个文本编辑器.其代码补完.编译及错误 ...
- ASC学习笔记
TCL:(Tool Command Language), a computer programming languagecharm++:基于C++的面向对象的并行编程语言.Charm++ is a p ...
- JSONObject和JSONArray区别及基本用法
一.JSONObject和JSONArray的数据表示形式 JSONObject的数据是用 { } 来表示的, 例如: { "id" : "123", & ...
- Git + Maven + Jenkins 实现分布式部署
一.安装 和 准备工作 我们选择了用 Tomcat 服务器下 war 包的安装方式.Jenkins 的下载地址:http://mirrors.jenkins-ci.org/,打开链接后,表格有war列 ...
- crypto必知必会
crypto必知必会 最近参加了个ctf比赛,在i春秋,南邮方面刷了一些crypto密码学题目,从中也增长了不少知识,在此关于常见的密码学知识做个小总结! Base编码 Base编码中用的比较多的是b ...
- iframe 里的高度自适应
由于公司里的很多东西都要用到iframe 导致我不得不各种百度 首先是自适应高度 // document.domain = "caibaojian.com"; function s ...