我可以大喊一声这就是个思博题吗?

首先如果你能快速把握题目的意思后,就会发现题目就是让你求出每个点要成为树的重心至少要嫁接多少边

先说一个显然的结论,重心的答案为\(0\)(废话)

然后我们考虑贪心处理,每次肯定要砍断以重心为根的树的大小尽量大的子树

那么至少要砍多少呢,至少\(\frac{1}{2}\)要到吧,然后就是思博的感性理解了——这是每个点要砍的边的上界

假如我们总有一种方案可以使嫁接满足条件(兴许更多,但是这个不会证啊)

那么怎么判断是否达到上界呢,很简单,先取了必要的然后看剩下的有没有超过\(\frac{1}{2}\)即可

这个文字不好表述,大家还是自己看看代码吧

#include<cstdio>
#include<cctype>
#include<algorithm>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=1000005;
struct edge
{
int to,nxt;
}e[N<<1]; int n,head[N],x,y,cnt,rt,mx[N],size[N],rch[N],tot,sum,cur,ans[N];
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
char Fin[S],Fout[S],*A,*B; int Ftop,pt[15];
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
Tp inline void write(T x)
{
if (!x) return (void)(pc('0'),pc('\n')); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc('\n');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
}F;
inline void addedge(CI x,CI y)
{
e[++cnt]=(edge){y,head[x]}; head[x]=cnt;
e[++cnt]=(edge){x,head[y]}; head[y]=cnt;
}
inline int max(CI a,CI b)
{
return a>b?a:b;
}
inline bool cmp(CI x,CI y)
{
return size[x]>size[y];
}
#define to e[i].to
inline void getrt(CI now,CI fa=0)
{
size[now]=1; for (RI i=head[now];i;i=e[i].nxt) if (to!=fa)
getrt(to,now),size[now]+=size[to],mx[now]=max(mx[now],size[to]);
if (mx[now]=max(mx[now],n-size[now]),mx[now]<mx[rt]) rt=now;
}
inline void DFS(CI now,CI fa=0)
{
size[now]=1; for (RI i=head[now];i;i=e[i].nxt)
if (to!=fa) DFS(to,now),size[now]+=size[to];
}
inline void calc(CI now,CI fa,CI used)
{
ans[now]=cur+((n-used-size[now]<<1)>n?0:-1);
for (RI i=head[now];i;i=e[i].nxt) if (to!=fa) calc(to,now,used);
}
int main()
{
//freopen("B.in","r",stdin); freopen("B.out","w",stdout);
RI i; for (F.read(n),i=1;i<n;++i) F.read(x),F.read(y),addedge(x,y);
for (mx[rt]=1e9,getrt(1),i=head[rt];i;i=e[i].nxt) rch[++tot]=to;
for (DFS(rt),sort(rch+1,rch+tot+1,cmp),i=1;i<=tot;++i)
if (((sum+=size[rch[i]])<<1)>=n) { cur=i; break; }
for (i=1;i<=tot;++i) calc(rch[i],rt,sum-max(size[rch[i]],size[rch[cur]]));
for (i=1;i<=n;++i) F.write(ans[i]); return F.Fend(),0;
}

LOJ #6042. 「雅礼集训 2017 Day7」跳蚤王国的宰相的更多相关文章

  1. 【思维题 细节】loj#6042. 「雅礼集训 2017 Day7」跳蚤王国的宰相

    挂于±1的细节…… 题目描述 跳蚤王国爆发了一场动乱,国王在镇压动乱的同时,需要在跳蚤国地方钦定一个人来做宰相. 由于当时形势的复杂性,很多跳蚤都并不想去做一个傀儡宰相,带着宰相的帽子,最后还冒着被打 ...

  2. 「雅礼集训 2017 Day7」跳蚤王国的宰相(树的重心)

    题面 来源 「 雅 礼 集 训 2017 D a y 7 」 跳 蚤 王 国 的 宰 相   传 统 2000   m s 1024   M i B {\tt「雅礼集训 2017 Day7」跳蚤王国的 ...

  3. 【LOJ6042】「雅礼集训 2017 Day7」跳蚤王国的宰相(思博题)

    点此看题面 大致题意: 给你一棵树,询问对于每个点需要改变多少条边来使得它成为树中到所有点距离和最小的点. 一些初始化及想法 这是一道思博题. 首先我们要知道一个结论:对于这棵树的重心,它的答案必定为 ...

  4. 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度

    题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...

  5. loj 6043「雅礼集训 2017 Day7」蛐蛐国的修墙方案

    loj 爆搜? 爆搜! 先分析一下,因为我们给出的是一个排列,然后让\(i\)给\(p_i\)连边,那么我们一定会得到若干个环,最后要使得所有点度数为1,也就是这些环有完备匹配,那么最后一定全是偶环. ...

  6. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度

    我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...

  7. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)

    题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...

  8. LOJ #6043. 「雅礼集训 2017 Day7」蛐蛐国的修墙方案

    我可以大喊一声这就是个SB题吗? 首先讲一句如果你像神仙CXR一样精通搜索你就可以得到\(80pts\)(无Subtask)的好成绩 我们考虑挖掘一下题目的性质,首先发现这是一个置换,那么我们发现这的 ...

  9. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)

    题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...

随机推荐

  1. 理解Linux文档的默认安全机制、隐藏属性、特殊权限,妈妈在也不用担心你从删库到跑路!!!

    写在前面 前面的章节 详解Linux文档属性.拥有者.群组.权限.差异,介绍了文档的基本权限,包括读写执行(r,w,x),还有文档若干的属性,包括是否为目录(d).文件(-).链接文件(l).拥有者. ...

  2. PHP面向对象特性

    目录 创建对象 成员属性 成员方法 构造方法 析构方法 垃圾回收机制 访问修饰符 魔术方法 对象比较 继承 重载 属性重载 方法重写 属性重写 静态属性 静态方法 多态 类型约束 抽象类 接口 fin ...

  3. .NET Core微服务之基于MassTransit实现数据最终一致性(Part 1)

    Tip: 此篇已加入.NET Core微服务基础系列文章索引 一.预备知识:数据一致性 关于数据一致性的文章,园子里已经有很多了,如果你还不了解,那么可以通过以下的几篇文章去快速地了解了解,有个感性认 ...

  4. 【朝花夕拾】Android安全之(一)权限篇

    前言        从Android6.0开始,Android系统对权限的处理产生了很大的变化.如果APP运行的设备系统版本为Android6.0或更高,并且target在23或更高,那么danger ...

  5. Java~命名规范

    下面总结以点java命名规范 虽然感觉这些规范比起C#来说有点怪,但还是应该尊重它的命名! 命名规范 项目名全部小写 包名全部小写 类名首字母大写,如果类名由多个单词组成,每个单词的首字母都要大写. ...

  6. Nginx反向代理后,java获取客户端真实IP地址

    一般情况下,java获取客户端IP地址的方法为request.getRemoteAddr();但这只是在没有网关或者代理的情况下,如果客户端将请求发送到nginx,再由nginx进行反向代理到目标服务 ...

  7. 简述java接口和C++虚类的相同和不同之处

    C++虚类相当于java中的抽象类,与接口的不同处是: 1.一个子类只能继承一个抽象类(虚类),但能实现多个接口 2.一个抽象类可以有构造方法,接口没有构造方法 3.一个抽象类中的方法不一定是抽象方法 ...

  8. docker-compose使用备忘(转)

    Docker-Compose简介 Docker-Compose项目是Docker官方的开源项目,负责实现对Docker容器集群的快速编排. Docker-Compose将所管理的容器分为三层,分别是工 ...

  9. 【深度学习系列】PaddlePaddle垃圾邮件处理实战(二)

    PaddlePaddle垃圾邮件处理实战(二) 前文回顾   在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度 ...

  10. 第三章 CLR如何解析引用类型

    C#编译器将代码打包成托管模块后,接着会将这些模块合并成程序集,然后统一加载到一个具体的目录,CLR在这个目录查找并且加载所需要的DLL或者exe. 程序集分类:弱命名程序集和强命名程序集,强命名程序 ...