题面戳我

题意:求

\[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))
\]

多组数据,\(n\le10^7\)。

sol

SBT

单组数据\(O(\sqrt n)\)都是套路了,完整公式就不写了。

最后要线性筛出来的积性函数长成这样

\[h(T)=\sum_{d|T}\mu(\frac Td)\phi(d)
\]

这个要怎么筛?我这种小菜鸡就只会大力分类讨论

我都快数不清我分了几种了

1、\(h(1)=1\)

2、\(h(p)=\mu(p)\phi(1)+\mu(1)\phi(p)=p-2\)

3、\(h(p^2)=\mu(p^2)\phi(1)+\mu(p)\phi(p)+\mu(1)\phi(p^2)=p^2-2p+1\)

4、\(h(p^k)=h(p^{k-1})*p\quad(k>2)\)

剩下的就线性筛了。

code

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int N = 1e7;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
int pri[N+5],tot,zhi[N+5],low[N+5];
ll h[N+5];
void Mobius()
{
zhi[1]=h[1]=1;
for (int i=2;i<=N;i++)
{
if (!zhi[i]) low[i]=pri[++tot]=i,h[i]=i-2;
for (int j=1;j<=tot&&i*pri[j]<=N;j++)
{
zhi[i*pri[j]]=1;
if (i%pri[j]==0)
{
low[i*pri[j]]=low[i]*pri[j];
if (low[i]==i)
if (i==pri[j]) h[i*pri[j]]=h[i]*pri[j]+1;
else h[i*pri[j]]=h[i]*pri[j];
else
h[i*pri[j]]=h[i/low[i]]*h[low[i]*pri[j]];
break;
}
low[i*pri[j]]=pri[j];
h[i*pri[j]]=h[i]*h[pri[j]];
}
}
for (int i=2;i<=N;i++)
h[i]+=h[i-1];
}
int main()
{
Mobius();
int T=gi();
while (T--)
{
int n=gi(),i=1;
ll ans=0;
while (i<=n)
{
int j=n/(n/i);
ans+=(h[j]-h[i-1])*(n/i)*(n/i);
i=j+1;
}
printf("%lld\n",ans);
}
}

[BZOJ4804]欧拉心算的更多相关文章

  1. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  2. BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)

    题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...

  3. bzoj4804: 欧拉心算 欧拉筛

    题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...

  4. 并不对劲的bzoj4804:欧拉心算

    题目大意 \(t\)(\(t\leq5000\))组询问,每次询问给出\(n\)(\(n\leq10^7\)),求: \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(gcd(i, ...

  5. [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演

    分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...

  6. 【bzoj4804】欧拉心算 解题报告

    [bzoj4804]欧拉心算 Description 给出一个数字\(N\),计算 \[\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\] Input 第一行为 ...

  7. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  8. BZOJ_4804_欧拉心算_欧拉函数

    BZOJ_4804_欧拉心算_欧拉函数 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N&l ...

  9. bzoj 4804 欧拉心算 欧拉函数,莫比乌斯

    欧拉心算 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 408  Solved: 244[Submit][Status][Discuss] Descr ...

随机推荐

  1. Websocket原理及使用场景[转载]

    WebSocket的使用场景 社交聊天.弹幕.多玩家游戏.协同编辑.股票基金实时报价.体育实况更新.视频会议/聊天.基于位置的应用.在线教育.智能家居等需要高实时的场景 由轮询到WebSocket 1 ...

  2. com.mysql.jdbc.Driver和com.mysql.cj.jdbc.Driver的区别

    概述:com.mysql.jdbc.Driver是mysql-connector-java 5中的,而com.mysql.cj.jdbc.Driver是mysql-connector-java 6中的 ...

  3. 如何解决jQuery easyui中locale文件下easyui-lang-zh_CN中文乱码问题

    1.在保存eclipse项目的目录下找到引入easyui-lang-zh_CN.js 2.用记事本打开该js文件,若打开后的中文正常,直接复制,粘贴到项目中的该js文件中,保存 3.若打开后中文出现乱 ...

  4. iOS isa指针

    在Objective-C中,任何类的定义都是对象.类和类的实例没有任何本质上的区别.任何对象都有isa指针. isa:是一个Class 类型的指针. 每个实例对象有个isa的指针,它指向对象的类,而C ...

  5. vector动态数组

    vector是STL模板库中的序列式容器,利用它可以有效地避免空间的浪费. 创建vector容器 vector< int >v:vector< char >:vector< ...

  6. Docker系统五:Docker仓库

    创建Docker Hub账户 登录和上传镜像到Hub.docker.com docker login //登陆hub.docker.com docker tag ubutun1404-baseimag ...

  7. SSH服务端配置、优化加速、安全防护

    CentOS7自带的SSH服务是OpenSSH中的一个独立守护进程SSHD.由于使用telnet在网络中是明文传输所以用其管理服务器是非常不安全的不安全,SSH协议族可以用来对服务器的管理以及在计算机 ...

  8. 故障定位之查找附近点GeoHash研讨

    随着移动终端的普及,很多应用都基于LBS功能,附近的某某(餐馆.银行.妹纸等等). 基础数据中,一般保存了目标位置的经纬度:利用用户提供的经纬度,进行对比,从而获得是否在附近. 目标:查找附近的XXX ...

  9. Mapreuduce实现网络数据包的清洗工作

    处理后的数据可直接放到hive或者mapreduce程序来统计网络数据流的信息,比如当前实现的是比较简单的http的Get请求的统计 第一个mapreduce:将时间.十六进制包头信息提取出来,并放在 ...

  10. ajax的缺点

    平时我们大多注意的都是ajax给我们所带来的好处诸如用户体验的提升.对ajax所带来的缺陷有所忽视. 下面所阐述的ajax的缺陷都是它先天所产生的. 1.ajax干掉了back按钮,即对浏览器后退机制 ...