Kruskal重构树(货车运输)
。。。
和Kruskal生成树一样
本来是u,v连一条f的边
现在变成新建一个点,点权为f,u v都像它连无边权的边
(实际上应该是u的根和v的根)
这样树有一些性质:
1.二叉树
2.原树与新树两点间路径上边权(点权)的最大(最小)值相等
3.子节点的边权(大于等于)小于等于父亲节点
4.原树中两点之间路径上边权的最大(最小)值等于新树上两点的LCA的点权
# include <iostream>
# include <stdio.h>
# include <stdlib.h>
# include <algorithm>
# include <string.h>
# define IL inline
# define ll long long
# define Fill(a, b) memset(a, b, sizeof(a));
using namespace std;
IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
}
const int MAXN = 20001, MAXM = 200001;
int ft[MAXN], n, m, cnt, fa[MAXN][20], w[MAXN], deep[MAXN], Fa[MAXN], num;
struct Edge{
int to, nt;
} edge[MAXM];
struct Kruskal{
int u, v, f;
IL bool operator <(Kruskal b) const{
return f > b.f;
}
} road[MAXM];
IL int Find(int x){
return Fa[x] == x ? x : Fa[x] = Find(Fa[x]);
}
IL void Add(int u, int v){
edge[cnt] = (Edge){v, ft[u]}; ft[u] = cnt++;
edge[cnt] = (Edge){u, ft[v]}; ft[v] = cnt++;
}
IL void Dfs(int u){
for(int e = ft[u]; e != -1; e = edge[e].nt){
int v = edge[e].to;
if(!deep[v]){
deep[v] = deep[u] + 1;
fa[v][0] = u;
Dfs(v);
}
}
}
IL int LCA(int u, int v){
if(Find(u) != Find(v)) return -1;
if(deep[u] < deep[v]) swap(u, v);
for(int i = 18; i >= 0; i--)
if(deep[fa[u][i]] >= deep[v]) u = fa[u][i];
if(u == v) return w[u];
for(int i = 18; i >= 0; i--)
if(fa[u][i] != fa[v][i]) u = fa[u][i], v = fa[v][i];
return w[fa[u][0]];
}
int main(){
Fill(ft, -1);
num = n = Read(); m = Read();
for(int i = 1; i <= 2 * n; i++)
Fa[i] = i;
for(int i = 1; i <= m; i++)
road[i] = (Kruskal){Read(), Read(), Read()};
sort(road + 1, road + m + 1);
for(int i = 1, tot = 0; i <= m && tot < n; i++){
int u = Find(road[i].u), v = Find(road[i].v);
if(u != v){
tot++;
w[++num] = road[i].f;
Fa[u] = Fa[v] = num;
Add(u, num); Add(v, num);
}
}
for(int i = num; i; i--)
if(!deep[i]) deep[i] = 1, Dfs(i);
for(int i = 1; i <= 18; i++)
for(int j = 1; j <= num; j++)
fa[j][i] = fa[fa[j][i - 1]][i - 1];
int Q = Read();
while(Q--){
int u = Read(), v = Read();
printf("%d\n", LCA(u, v));
}
return 0;
}
Kruskal重构树(货车运输)的更多相关文章
- Luogu P1967 货车运输(Kruskal重构树)
P1967 货车运输 题面 题目描述 \(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 \ ...
- NOIP 2013 提高组 洛谷P1967 货车运输 (Kruskal重构树)
题目: A 国有 nn 座城市,编号从 11 到 nn,城市之间有 mm 条双向道路.每一条道路对车辆都有重量限制,简称限重. 现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情 ...
- 洛谷p1967货车运输(kruskal重构树)
题面 题解中有很多说最优解是kruskal重构树 所以 抽了个早自习看了看这方面的内容 我看的博客 感觉真的挺好使的 首先对于kruskal算法来说 是基于贪心的思想把边权排序用并查集维护是否是在同一 ...
- kruskal重构树学习笔记
\(kruskal\) 重构树学习笔记 前言 \(8102IONCC\) 中考到了,本蒟蒻不会,所以学一下. 前置知识 \(kruskal\) 求最小(大)生成树,树上求 \(lca\). 算法详 ...
- Kruskal重构树学习笔记+BZOJ3732 Network
今天学了Kruskal重构树,似乎很有意思的样子~ 先看题面: BZOJ 题目大意:$n$ 个点 $m$ 条无向边的图,$k$ 个询问,每次询问从 $u$ 到 $v$ 的所有路径中,最长的边的最小值. ...
- 【BZOJ】3732: Network【Kruskal重构树】
3732: Network Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2812 Solved: 1363[Submit][Status][Dis ...
- CF1253F Cheap Robot(神奇思路,图论,最短路,最小生成树/Kruskal 重构树/并查集)
神仙题. 先考虑平方级别的暴力怎么做. 明显答案有单调性,先二分 \(c\). 先最短路预处理 \(dis_u\) 表示 \(u\) 到离它最近的充电站的距离(一开始把 \(1\) 到 \(k\) 全 ...
- 水壶-[Kruskal重构树] [解题报告]
水壶 本来从不写针对某题的题解,但因为自己实在是太蠢了,这道题也神TM的恶心,于是就写篇博客纪念一下 H水壶 时间限制 : 50000 MS 空间限制 : 565536 KB 评测说明 : 2s,51 ...
- [bzoj 3732] Network (Kruskal重构树)
kruskal重构树 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1-N. 图中有M条边 (1 <= M <= 30,000) ,第 ...
- 【BZOJ 3732】 Network Kruskal重构树+倍增LCA
Kruskal重构树裸题, Sunshine互测的A题就是Kruskal重构树,我通过互测了解到了这个神奇的东西... 理解起来应该没什么难度吧,但是我的Peaks连WA,,, 省选估计要滚粗了TwT ...
随机推荐
- Redis Sentinel安装与部署,实现redis的高可用
前言 对于生产环境,高可用是避免不了要面对的问题,无论什么环境.服务,只要用于生产,就需要满足高可用:此文针对的是redis的高可用. 接下来会有系列文章,该系列是对spring-session实现分 ...
- 用Markdown写微信公众号文章
目前微信公众号的编辑器是不支持Markdown语法的,那怎么办呢? 有一款叫Markdown Here的插件可以解决这个问题(支持Chrome.Firefox.Safari). 官方网站:http:/ ...
- CentOS 6下编译安装MySQL 5.6
一:卸载旧版本 使用下面的命令检查是否安装有MySQL Server rpm -qa | grep mysql 有的话通过下面的命令来卸载掉 rpm -e mysql //普通删除模式 rpm -e ...
- python学习:猜数字游戏
猜数字游戏 系统生成一个100以内的随机整数, 玩家有6次机会进行猜猜看,每次猜测都有反馈(猜大了,猜小了,猜对了-结束) 6次中,猜对了,玩家赢了. 否则系统赢了 #!/usr/bin/en ...
- Array 数组的排序 sort
JavaScript实现多维数组.对象数组排序,其实用的就是原生的sort()方法,用于对数组的元素进行排序.sort() 方法用于对数组的元素进行排序.语法如下:arrayObject.sort(s ...
- 940A Points on the line
传送门 题目大意 给你n和d还有n个数,计算最少删除几个点可以是最大点与最小点之差小于等于d 分析 先对所有点排序,枚举每一个点ai到ai+d中有几个点,答案即n-其中最大的值 代码 #include ...
- [记录]MySQL读写分离(Atlas和MySQL-proxy)
MySQL读写分离(Atlas和MySQL-proxy) 一.阿里云使用Atlas从外网访问MySQL(RDS) (同样的方式修改配置文件可以实现代理也可以实现读写分离,具体看使用场景) 1.在跳板机 ...
- appium滑动操作(向上、向下、向左、向右)
appium滑动操作(向上滑动.向下滑动.向左滑动.向右滑动) 测试app:今日头条apk 测试设备:夜游神模拟器 代码如下: 先用x.y获取当前的width和height def getSize() ...
- gerrit+nginx+centos安装配置
安装环境 centos 6.8 gerrit-full-2.5.2.war 下载地址:https://gerrit-releases.storage.googleapis.com/gerrit-ful ...
- Ubuntu搭建Hadoop的踩坑之旅(一)
本文将介绍如何使用虚拟机一步步从安装Ubuntu到搭建Hadoop伪分布式集群. 本文主要参考:在VMware下安装Ubuntu并部署Hadoop1.2.1分布式环境 - CSDN博客 一.所需的环境 ...