题意:

在一个三维空间中,已知(0,0,0)和(n,n,n),求从原点可以看见多少个点

思路:

如果要能看见,即两点之间没有点,所以gcd(a,b,c) = 1         /*来自kuangbin

利用推GCD(a,b)的方法,可以推出GCD(a,b,c) = 1的个数等于mu[i]*(n/i)*(n/i)*(n/i)的和

然而是从0点开始的,而我们只能从1开始计算,因为少了0周围的所有ans初始+3

对于A(0,0,1),所以在计算mu[i]*(n/i)*(n/i)*(n/i)时,我们忽略了A与x,y轴的求出来点的关联情况,所以加上

(n/i)*(n/i),而且有3个点所以每次要加上3*(n/i)*(n/i).
  /*纯属个人理解- -

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <vector>
#include <algorithm>
#include <functional>
typedef long long ll;
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = 1000000+10; int is_prime[maxn];
int prime[maxn];
int sum[maxn];
int mu[maxn];
int tot; int a,b,c,d,k;
ll Min(ll x,ll y)
{
if(x < y) return x;
else return y;
}
void Moblus()
{
tot = 0;
memset(is_prime,0,sizeof(is_prime));
mu[1] = 1;
for(int i = 2; i <= maxn; i++)
{
if(!is_prime[i])
{
prime[tot++] = i;
mu[i] = -1;
} for(int j = 0; j < tot; j++)
{
if(prime[j]*i>maxn)
break;
is_prime[i*prime[j]] = 1;
if(i % prime[j]) //prime[j]不重复
{
mu[i*prime[j]] = -mu[i];
}
else
{
mu[i*prime[j]] = 0;
break;
}
}
}
} int main()
{
int T,n;
Moblus();
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
ll ans = 3;
for(int i = 1;i <= n;i++)
ans += (ll)mu[i]*((ll)(n/i)*(n/i)*(n/i) + (ll)(n/i)*(n/i)*3);
printf("%lld\n",ans);
}
return 0;
}

  

SPOJ VLATTICE(莫比乌斯反演)的更多相关文章

  1. SPOJ - VLATTICE (莫比乌斯反演)

    Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many latt ...

  2. SPOJ PGCD(莫比乌斯反演)

    传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...

  3. bzoj 2820 / SPOJ PGCD 莫比乌斯反演

    那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...

  4. SPOJ 7001(莫比乌斯反演)

    传送门:Visible Lattice Points 题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1. 设f(d) = GCD(a,b,c) = d的种类数 : ...

  5. SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)

    题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...

  6. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  7. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  8. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  9. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演

    这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...

  10. SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解

    题意: 有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点. 思路: 按题意研究一下就会发现题目所求为. \[(\sum_{i=1}^n\sum_{j=1}^n\su ...

随机推荐

  1. Beta集合

    Beta冲刺day1 Beta冲刺day2 Beta冲刺day3 Beta冲刺day4 Beta冲刺day5 Beta冲刺day6 Beta冲刺day7 测试总结 总结合集 Beta预备

  2. [NOI2015]软件包管理器

    4621 [NOI2015]软件包管理器  题目等级 : 钻石 Diamond   题目描述 Description Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过 ...

  3. nyoj 星期几?

    星期几? 时间限制:500 ms  |  内存限制:65535 KB 难度:2   描述                      Acmer 小鱼儿 埋头ku算一道题 条件:已知给定 一日期 告诉你 ...

  4. requestAnimationFrame Web中写动画的另一种选择

    HTML5和CSS3盛行的今天  动画变得很简单实现 我们可以用transition . animation + keyframe .也可以用canvas等 我在上一篇 点击回到顶部的文章中发现的这个 ...

  5. .Net Core MongoDB 简单操作。

    一:MongoDB 简单操作类.这里引用了MongoDB.Driver. using MongoDB.Bson; using MongoDB.Driver; using System; using S ...

  6. python 编码规范整理

    PEP8 Python 编码规范 一 代码编排1 缩进.4个空格的缩进(编辑器都可以完成此功能),不要使用Tap,更不能混合使用Tap和空格.2 每行最大长度79,换行可以使用反斜杠,最好使用圆括号. ...

  7. 前端基础之CSS-Day13

    1.CSS 语法 1.1.CSS 规则由两个主要的部分构成:选择器,以及一条或多条声明. selector { property: value; property: value; ... proper ...

  8. 使用freemaker 导出word 含多张图片,若无图片则显示文本信息

    1.使用的Microsoft Office 2007,添加一个无边框的表格,并插入一张图片,最后另存为编码utf-8,一开始保存的word xml格式的,图片的base64编码位于文档最后,暂时没有找 ...

  9. 快速获取表单多条数据,使用ajax传递给后台

    当表单中有多条数据需要向后台传递时,一个一个的获取显然是不可取的办法,可以借助表单的serialize()方法获取. HTML: <form id="form"> &l ...

  10. 阿里云API网关(14)流控策略

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...