题意:

在一个三维空间中,已知(0,0,0)和(n,n,n),求从原点可以看见多少个点

思路:

如果要能看见,即两点之间没有点,所以gcd(a,b,c) = 1         /*来自kuangbin

利用推GCD(a,b)的方法,可以推出GCD(a,b,c) = 1的个数等于mu[i]*(n/i)*(n/i)*(n/i)的和

然而是从0点开始的,而我们只能从1开始计算,因为少了0周围的所有ans初始+3

对于A(0,0,1),所以在计算mu[i]*(n/i)*(n/i)*(n/i)时,我们忽略了A与x,y轴的求出来点的关联情况,所以加上

(n/i)*(n/i),而且有3个点所以每次要加上3*(n/i)*(n/i).
  /*纯属个人理解- -

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <queue>
#include <vector>
#include <algorithm>
#include <functional>
typedef long long ll;
using namespace std;
const int inf = 0x3f3f3f3f;
const int maxn = 1000000+10; int is_prime[maxn];
int prime[maxn];
int sum[maxn];
int mu[maxn];
int tot; int a,b,c,d,k;
ll Min(ll x,ll y)
{
if(x < y) return x;
else return y;
}
void Moblus()
{
tot = 0;
memset(is_prime,0,sizeof(is_prime));
mu[1] = 1;
for(int i = 2; i <= maxn; i++)
{
if(!is_prime[i])
{
prime[tot++] = i;
mu[i] = -1;
} for(int j = 0; j < tot; j++)
{
if(prime[j]*i>maxn)
break;
is_prime[i*prime[j]] = 1;
if(i % prime[j]) //prime[j]不重复
{
mu[i*prime[j]] = -mu[i];
}
else
{
mu[i*prime[j]] = 0;
break;
}
}
}
} int main()
{
int T,n;
Moblus();
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
ll ans = 3;
for(int i = 1;i <= n;i++)
ans += (ll)mu[i]*((ll)(n/i)*(n/i)*(n/i) + (ll)(n/i)*(n/i)*3);
printf("%lld\n",ans);
}
return 0;
}

  

SPOJ VLATTICE(莫比乌斯反演)的更多相关文章

  1. SPOJ - VLATTICE (莫比乌斯反演)

    Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many latt ...

  2. SPOJ PGCD(莫比乌斯反演)

    传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...

  3. bzoj 2820 / SPOJ PGCD 莫比乌斯反演

    那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...

  4. SPOJ 7001(莫比乌斯反演)

    传送门:Visible Lattice Points 题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1. 设f(d) = GCD(a,b,c) = d的种类数 : ...

  5. SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)

    题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...

  6. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  7. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  8. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  9. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演

    这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...

  10. SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解

    题意: 有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点. 思路: 按题意研究一下就会发现题目所求为. \[(\sum_{i=1}^n\sum_{j=1}^n\su ...

随机推荐

  1. 在深度linux下安装pip3与jupyter

    前言 以下安装说明基于已经正确安装python3 文件下载 https://pypi.python.org/pypi/pip 下载pip-9.0.1.tar.gz (md5, pgp)文件 安装准备工 ...

  2. 【iOS】Swift GCD-下

    欢迎来到本GCD教程的第二同时也是最终部分! 在第一部分中,你学到了并发,线程以及GCD的工作原理.通过使用dispatch_barrrier和dispatch_sync,你做到了让PhotoMana ...

  3. SpringMVC源码情操陶冶#task-executor解析器

    承接Spring源码情操陶冶-自定义节点的解析.线程池是jdk的一个很重要的概念,在很多的场景都会应用到,多用于处理多任务的并发处理,此处借由spring整合jdk的cocurrent包的方式来进行深 ...

  4. nyoj 第几是谁

    第几是谁? 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl"12个字符,将其按字典序排列,如果给出任意一种排列, ...

  5. kafka--- consumer 消费消息

    1. consumer API kafka 提供了两套 consumer API: 1. The high-level Consumer API 2. The SimpleConsumer API 其 ...

  6. asp.net(C#)实现功能强大的时间日期处理类完整实例

    作者:smartsmile2012 字体:[增加 减小] 类型:转载 时间:2016-06-30我要评论 这篇文章主要介绍了asp.net(C#)实现功能强大的时间日期处理类,封装了针对日期与时间的各 ...

  7. Django admin 中抛出 'WSGIRequest' object has no attribute 'user'的错误

    这是Django版本的问题,1.9之前,中间件的key为MIDDLEWARE_CLASSES, 1.9之后,为MIDDLEWARE.所以在开发环境和其他环境的版本不一致时,要特别小心,会有坑. 将se ...

  8. 简单搭建SpringMVC框架详解

    在公司待了两年,用的一直是Spring+SpringMVC+Hibernate框架,都是公司自己搭建好的,自己从来没有主动搭建过,闲来无聊,自己搭建试试.一下即我搭建的过程以及搭建所遇到的问题,有部分 ...

  9. Spark:reduceByKey函数的用法

    reduceByKey函数API: def reduceByKey(partitioner: Partitioner, func: JFunction2[V, V, V]): JavaPairRDD[ ...

  10. 小技巧-WEB API第一次加载很慢

    原文:http://www.afuhao.com/article_articleId-219.shtml 摘要:ASP.NET页面首次打开很慢,但别的页面如果没有访问过,去访问也会慢.你也许认为它是在 ...