XM Reserves

Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 99    Accepted Submission(s): 45

Problem Description
As an eligible Ingress Resistance Agent you should know your power source, the Exotic Matter.
We call it XM, which is the driving force behind all of our actions in Ingress.
XM allows us to construct items through hacking portals, to attack enemy portals, make links and create fields.

We try to collect XM from the ground. XM concentration come from location based services, meaning that areas with a lot of foot traffic have higher amounts versus places that don't.
You can collect XM by moving through those areas.
The XM will be automatically harvested by your Scanner when it is within your interaction circle/range.

Alice decides to select a location such that she can collect XM as much as possible.
To simplify the problem, we consider the city as a grid map with size `n*m' numbered from (0,0) to (n−1,m−1).
The XM concentration inside the block (i,j) is p(i,j).
The radius of your interaction circle is r.
We can assume that XM of the block (i,j) are located in the centre of this block.
The distance between two blocks is the Euclidean distance between their centres.

Alice stands in the centre of one block and collects the XM.
For each block with the distance d smaller than r to Alice, and whose XM concertation is p(i,j), Alice's scanner can collects p(i,j)/(1+d) XM from it.

Help Alice to determine the maximum XM which she can collect once he stands in the centre of one block.

 
Input
There are multiple cases.
For each case, the first line consists two integers n,m (1≤n,m≤500) and one float-point number r (0≤r≤300).
Each of the following n line consists m non-negative float-point numbers corresponding to the XM concentrations inside each blocks.
 
Output
For each case, output the maximum XM which Alice can collect in one line.
Your answers should be rounded to three decimal places.
 
Sample Input
3 3 1
1 3 6
7 9 4
2 8 1
3 3 2
1 3 6
7 9 4
2 8 1
5 5 1.
5
4 3 2 9
1
3 4 3 2
8
9 4 3 2
1
2 3 0 1
2
6 3 4 3 1
 
Sample Output
9.000
24.142
17.956
 
/*
hdu 5885 FFT卷积 problem:
给出一个n×m的格子,距离它小于等于r的那些格子都会贡献p(i,j)/(d+1), d为两个格子的距离. p[i][j]为格子的价值
选择一个格子, 使得贡献和最大. solve:
参考:https://async.icpc-camp.org/d/558-2016-icpc
因为小于r的格子都会给当前格子贡献, 所以可以考虑先计算出所有格子对<r的其它格子的贡献.那么最后一次遍历就能找出
出最大值.那么会处理出来一个 (n+r+r,m+r+r)的矩阵.
然后就是如何计算, 格子(i,j)按照(x,y)移动后会到格子(i+x,j+y).坐标相加
如果把所有方向处理成一个一维矩阵,那么当前点与它们相乘后的位置就是当前点能到达的目标位置(卷积,坐标相加)
都转换成一维.
0*M+0 0*M+1 0*M+2
0*M+0 0*M+1 0*M+2 1*M+0 ... (方向)
---->
0*M+0 0*M+1 0*M+2 1*M+0
0*M+1 0*M+2 1*M+0
求卷积后坐标之间是存在一定关系的.类似于A,B集合中有多少a+b=c那种题的思想. (新技能get)
(看代码想了很久才懂 TAT.. )
用a[i*M + j]保存p(i,j), b[i*M+j]保存 1/d.
c = a*b, 那么第i*M + j就是i,j的贡献和. 本来最开始用的m但是发现有问题,因为一行处理后有m+2*r个点,换成M就好了....
hhh-2016-09-21 21:10:30
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <math.h>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define key_val ch[ch[root][1]][0]
using namespace std;
const int maxn = 1e6 + 1000;
const int inf = 0x3f3f3f3f;
const ll mod = 1e9 + 7;
const double eps = 1e-7;
template<class T> void read(T&num)
{
char CH;
bool F=false;
for(CH=getchar(); CH<'0'||CH>'9'; F= CH=='-',CH=getchar());
for(num=0; CH>='0'&&CH<='9'; num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p)
{
if(!p)
{
puts("0");
return;
}
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const double PI = acos(-1.0); struct Complex
{
double x,y;
Complex(double _x = 0.0,double _y = 0.0)
{
x = _x;
y = _y;
}
Complex operator-(const Complex &b)const
{
return Complex(x-b.x,y-b.y);
}
Complex operator+(const Complex &b)const
{
return Complex(x+b.x,y+b.y);
}
Complex operator*(const Complex &b)const
{
return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
}; void change(Complex y[],int len)
{
int i,j,k;
for(i = 1,j = len/2; i < len-1; i++)
{
if(i < j) swap(y[i],y[j]);
k = len/2;
while(j >= k)
{
j-=k;
k/=2;
}
if(j < k) j+=k;
}
} void fft(Complex y[],int len,int on)
{
change(y,len);
for(int h = 2; h <= len; h <<= 1)
{
Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j = 0; j < len; j+=h)
{
Complex w(1,0);
for(int k = j; k < j+h/2; k++)
{
Complex u = y[k];
Complex t = w*y[k+h/2];
y[k] = u+ t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if(on == -1)
{
for(int i = 0; i < len; i++)
y[i].x /= len;
}
} double dis(int a,int b)
{
return sqrt(a*a + b*b);
} Complex a[2*maxn];
Complex b[2*maxn]; int main()
{
int k;
int n,m,limit;
double x,r;
while(scanf("%d%d%lf",&n,&m,&r) != EOF)
{
limit =0, k = 1;
while(r >= limit)
{
limit ++ ;
}
limit -= 1;
int M = m +limit + limit;
while(k < (n+r+r)*(m+r+r))
k <<= 1; for(int i = 0;i < k;i++)
{
a[i] = b[i] = 0;
}
for(int i = 0;i < n;i++)
{
for(int j = 0;j < m;j++)
{
read(x);
a[i*M + j] = x;
}
}
fft(a,k,1);
for(int i = -limit;i <= limit;i++)
{
for(int j = -limit;j <= limit;j++)
{
double len = dis(i,j);
if( r > len)
b[(i+limit) * M + j + limit] = 1.0/(len+1); }
} fft(b,k,1);
for(int i = 0;i < k;i++)
a[i] = a[i] * b[i];
fft(a,k,-1);
double ans = 0;
for(int i = 0;i < n;i++)
{
for(int j = 0;j < m;j++)
{
ans = max(ans,a[(i + limit) * M + j + limit].x);
}
}
printf("%.3f\n",ans);
}
return 0;
}

  

hdu 5885 FFT的更多相关文章

  1. hdu 5830 FFT + cdq分治

    Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  2. HDU 1402 FFT 大数乘法

    $A * B$ FFT模板题,找到了一个看起来很清爽的模板 /** @Date : 2017-09-19 22:12:08 * @FileName: HDU 1402 FFT 大整数乘法.cpp * ...

  3. hdu 5885 XM Reserves (FFT建模)

    Problem Description As an eligible Ingress Resistance Agent you should know your power source, the E ...

  4. HDU 4609 FFT模板

    http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...

  5. hdu 4609 FFT

    题意:给出一堆数,问从这些数中取3个能组成三角形的概率? sol:其实就是问从这些数里取3个组成三角形有多少种取法 脑洞大开的解法:用FFT 设一开始的数是1 3 3 4 作一个向量x,其中x[i]= ...

  6. HDU 1402 fft 模板题

    题目就是求一个大数的乘法 这里数字的位数有50000的长度,按平时的乘法方式计算,每一位相乘是要n^2的复杂度的,这肯定不行 我们可以将每一位分解后作为系数,如153 = 1*x^2 + 5*x^1 ...

  7. hdu 1402 FFT(模板)

    A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  8. HDU 4609 FFT+组合数学

    3-idiots Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  9. HDU 4609 FFT+各种分类讨论

    思路: http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html 其实我是懒得写了.... 一定要define int long ...

随机推荐

  1. 2017-2018-1 20155306 mypwd的实现

    2017-2018-1 20155306 mypwd的实现 一.pwd的使用 功能: Linux中用 pwd 命令来查看"当前工作目录"的完整路径. 命令格式:pwd [选项] 命 ...

  2. Beta阶段敏捷冲刺每日报告——Day0

    下一阶段需要改进完善的功能: 搜索框在Firefox和IE中显示不正常问题 下一阶段新增的功能: ToDoList功能:针对博主的功能,在博主登录之后可以添加和修改待办事项,每个事项包括标题.内容.日 ...

  3. Python randrange() 函数

    Python randrange() 函数  Python 数字 描述 randrange() 方法返回指定递增基数集合中的一个随机数,基数缺省值为1. 语法 以下是 randrange() 方法的语 ...

  4. html{font-size:62.5%}

    为什么要使用html,body{font-size:62.5%}? 使用以下代码查看浏览器的初始font-size: <!DOCTYPE html><html><head ...

  5. MSSQL 2000 错误823恢复

    一.故障描述 MSSQL Server 2000 附加数据库错误823,附加数据库失败.数据库没有备份,不能通过备份恢复数据库,急需恢复数据库中的数据. 二.故障分析SQL Server数据库 823 ...

  6. 利用封装、继承对Java代码进行优化

    注:本文实例分别可以在oldcastle(未优化的代码)和newcastle(优化后的代码)中查看,网址见文末 城堡游戏: 城堡中有多个房间,用户通过输入north, south, east, wes ...

  7. Python内置函数(24)——set

    英文文档: class set([iterable]) Return a new set object, optionally with elements taken from iterable. s ...

  8. 安装 go 语言环境

    操作系统: CentOS 6.9_x64 go语言版本: 1.8.3 安装go 这里直接安装二进制,其它方式请自行搜索. 1.下载并安装go 命令如下: ? 1 2 3 wget https://st ...

  9. django中图片的上传和显示

    上传图片实际上是 把图片存在服务器的硬盘中,将图片存储的路径存在数据库中. 1 首先要配置文件上传的路径: 1.1 建立静态文件目录 在项目根目录下 新建一个 static文件夹,下面再建立一个med ...

  10. 查看centos版本及32还是64位

    1.[root@mini1 ~]# cat /etc/issue 2.[root@mini1 ~]#  cat /etc/redhat-release 查看位数: [root@mini1 ~]#  g ...