bzoj 4025: 二分图
Description
神犇有一个n个节点的图。因为神犇是神犇,所以在T时间内一些边会出现后消失。神犇要求出每一时间段内这个图是否是二分图。这么简单的问题神犇当然会做了,于是他想考考你。
解题报告:
用时:2h30min,4WA
这题比较吼,首先想到要找奇环,然后我就不加思考的直接找奇环,然后取环上时间的公共部分,差分一波,发现时间不允许,然后线段树乱优化,发现并不能够维护,然后这么挂了,最后听说是cdq,按时间作为区间分治,然后加上完全在区间内的所有边,判断奇环,这里用到并查集的按秩合并,不能路径压缩,每一次把秩小的合并到大的,手玩发现复杂度是可以的,每一次暴力改回即可
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=100005;
int fa[N],d[N],n,m,T,ans[N],dis[N];
struct node{int x,y,l,r;};
vector<node>S;
int find(int x){while(x!=fa[x])x=fa[x];return x;}
int getdis(int x){
int ret=0;
while(x!=fa[x])ret^=dis[x],x=fa[x];
return ret;
}
int st[N<<2],top=0;
void merge(int x,int y,int to){
if(d[x]>d[y])swap(x,y);
if(d[x]==d[y])d[y]++,st[++top]=-y;
st[++top]=x;fa[x]=y;dis[x]=to;
}
void Clear(int last){
while(top!=last){
if(st[top]<0)d[-st[top]]--;
else fa[st[top]]=st[top],dis[st[top]]=0;
top--;
}
}
void solve(int l,int r,vector<node>S){
node a;int to,x,y,fx,fy,mid=(l+r)>>1,sz=S.size(),last=top;
vector<node>ll,rr;
for(int i=0;i<sz;i++){
a=S[i];
if(a.l==l && a.r==r){
x=a.x;y=a.y;
fx=find(x);fy=find(y);
to=getdis(x)^getdis(y)^1;
if(fx!=fy)merge(fx,fy,to);
else{
if(to==1){
for(int j=l;j<=r;j++)ans[j]=1;
Clear(last);return ;
}
}
}
else if(a.r<=mid)ll.push_back(a);
else if(a.l>mid)rr.push_back(a);
else{
ll.push_back((node){a.x,a.y,a.l,mid});
rr.push_back((node){a.x,a.y,mid+1,a.r});
}
}
if(l!=r)solve(l,mid,ll),solve(mid+1,r,rr);
Clear(last);
}
void work()
{
int x,y,s,t;
scanf("%d%d%d",&n,&m,&T);
for(int i=1;i<=n;i++)fa[i]=i,d[i]=0;
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&x,&y,&s,&t);
if(s<t)S.push_back((node){x,y,s+1,t});
}
solve(1,T,S);
for(int i=1;i<=T;i++)ans[i]?puts("No"):puts("Yes");
}
int main()
{
work();
return 0;
}
错的乱搞:
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define ls (node<<1)
#define rs (node<<1|1)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=100005,M=200005;
int head[N],num=0,nxt[M<<1],to[M<<1],s[M<<1],t[M<<1],n,m,T,dfn[N],vis[N];
void link(int x,int y,int St,int Tt){
nxt[++num]=head[x];to[num]=y;head[x]=num;
s[num]=St;t[num]=Tt;
}
struct seg{int min,max;}tr[N<<2];int ans[N];bool app[N];
void upd(int node){
tr[node].min=Min(tr[ls].min,tr[rs].min);
tr[node].max=Max(tr[ls].max,tr[rs].max);
}
void updata(int l,int r,int node,int sa,int id){
if(l>sa || r<sa)return ;
if(l==r){tr[node].min=t[id];tr[node].max=s[id];return ;}
int mid=(l+r)>>1;
updata(l,mid,ls,sa,id);updata(mid+1,r,rs,sa,id);
upd(node);
}
seg query(int l,int r,int node,int sa,int se){
if(sa<=l && r<=se)return tr[node];
int mid=(l+r)>>1;
if(se<=mid)return query(l,mid,ls,sa,se);
else if(sa>mid)return query(mid+1,r,rs,sa,se);
else{
seg q1,q2,ret;
q1=query(l,mid,ls,sa,se);q2=query(mid+1,r,rs,sa,se);
ret.min=Min(q1.min,q2.min);ret.max=Max(q1.max,q2.max);
return ret;
}
}
void solve(int x,int y,int i){
seg tmp=query(1,n,1,dfn[x],dfn[y]-1);
tmp.min=Min(tmp.min,t[i]);
tmp.max=Max(tmp.max,s[i]);
if(tmp.min>=tmp.max)
ans[tmp.max+1]--,ans[tmp.min]++;
}
void dfs(int x,int last,int dep){
int u;dfn[x]=dep;
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(u==last || app[i])continue;
if(vis[u]==vis[x]){
solve(u,x,i);
app[i]=app[i^1]=true;
continue;
}
updata(1,n,1,dep,i);
if(!vis[u])vis[u]=3-vis[x],dfs(u,x,dep+1);
}
}
void work()
{
int x,y,St,Tt;
scanf("%d%d%d",&n,&m,&T);
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&x,&y,&St,&Tt);
link(x,y,St,Tt-1);link(y,x,St,Tt-1);
}
vis[1]=1;dfs(1,1,1);
for(int i=1;i<=T;i++)ans[i]+=ans[i-1];
for(int i=0;i<T;i++)
if(ans[i])puts("No");
else puts("Yes");
}
int main()
{
work();
return 0;
}
bzoj 4025: 二分图的更多相关文章
- bzoj 4025 二分图 分治+并查集/LCT
bzoj 4025 二分图 [题目大意] 有n个点m条边,边会在start时刻出现在end时刻消失,求对于每一段时间,该图是不是一个二分图. 判断二分图的一个简单的方法:是否存在奇环 若存在奇环,就不 ...
- [BZOJ 4025]二分图(线段树分治+带边权并查集)
[BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...
- BZOJ 4025: 二分图 [线段树CDQ分治 并查集]
4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hno ...
- BZOJ 4025 二分图(时间树+并查集)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4025 [题目大意] 给出一张图,有些边只存在一段时间,问在一个每个时间段, 这张图是否 ...
- bzoj 4025 二分图——线段树分治+LCT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4025 线段树分治,用 LCT 维护链的长度即可.不过很慢. 正常(更快)的方法应该是线段树分 ...
- 「bzoj 4025: 二分图」
题目 显然二分图没有奇环 于是考虑使用并查集维护一下看看是否存在奇环 我们可以考虑加权并查集,维护出\(x\)到\(fa_x\)的实际距离 由于我们只需要考虑奇偶性,于是我们处理出到根的路径异或一下就 ...
- 【刷题】BZOJ 4025 二分图
Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简单的问题神犇当然会做了,于是他想考考你. Input ...
- bzoj 4025 二分图 lct
题目传送门 题解: 首先关于二分图的性质, 就是没有奇环边. 题目其实就是让你判断每个时段之内有没有奇环. 其次 lct 只能维护树,(反正对于我这种菜鸟选手只会维护树), 那么对于一棵树来说, 填上 ...
- BZOJ 4025 二分图 LCT维护最大生成树
怎么说呢,我也不知道该咋讲,你就手画一下然后 yy 一下就发现这么做是对的. 为什么我明明都想出来了,却还是讲不出来啊~ #include <cstdio> #include <ve ...
随机推荐
- android 广播,manifest.xml注册,代码编写
1.种 private void downloadBr(File file) { // 广播出去,由广播接收器来处理下载完成的文件 Intent sendIntent = new Intent ...
- 【iOS】swift 让程序挂起后,能在后台继续运行任务
1,程序的挂起和退出 由于iOS设备资源有限.当用户点击了home键,或者另一个应用程序启动了.那么原先那个程序便进入后台被挂起,不是退出,只是停止执行代码,同时它的内存被锁定.当应用程序恢复时,它会 ...
- Hibernate之ORM与Hibernate
ORM: ORM是 Object /Relation Mapping,对象/关系数据库映射. 目前比较流行的编程语言,如java ,c#等,它们都是面向对象的编程语言,而目前比较主流的数据库产品,如O ...
- day-2 如何搭建一个github代码库
最近在听尤瓦尔·赫拉利代写的两本书<人类简史>和<未来简史>两本书评,一部描述人类从哪里来,一部描述人类将往哪里去,书中阐述以前我们经历的饥饿.疾病和战争已经渐渐逝去,未来我们 ...
- 用js 获取url 参数 页面跳转 ? 后的参数
记得之前在原来的公司写过这个东西,但是还是忘记怎么接住参数了,只知道怎么把id传过去! 问了身边的大佬 他首先推荐了我一个链接是别人写好的方法 附上链接地址:http://blog.csdn.net/ ...
- 剑指offer-二叉树中和为某一值的路径
题目描述 输入一颗二叉树和一个整数,打印出二叉树中结点值的和为输入整数的所有路径.路径定义为从树的根结点开始往下一直到叶结点所经过的结点形成一条路径. 解题思路 利用前序遍历的思想,定义FindP ...
- 深度学习之 rnn 台词生成
深度学习之 rnn 台词生成 写一个台词生成的程序,用 pytorch 写的. import os def load_data(path): with open(path, 'r', encoding ...
- spring-oauth-server实践:客户端和服务端环境搭建
客户端:http://localhost:8080/spring-oauth-client/index.jsp 服务端:http://localhost:8080/spring-oauth-serve ...
- zuul入门(2)zuul的过滤器分类和加载
一.Groovy编写的Filter 1.可以放到指定目录加载 创建一个pre类型的filter,在run方法中获取HttpServletRequest 然后答应header信息 在代码中加入groov ...
- python之集合,深浅copy
一. 集合 集合是无序的,不重复的数据集合,它里面的元素是可哈希的(不可变类型),但是集合本身是不可哈希(所以集合做不了字典的键)的.以下是集合最重要的两点: 去重,把一个列表变成集合,就自动去重了. ...