poj 3384 半平面交
| Time Limit: 2000MS | Memory Limit: 65536K | |||
| Total Submissions: 5183 | Accepted: 1548 | Special Judge | ||
Description
Feng shui is the ancient Chinese practice of placement and arrangement of space to achieve harmony with the environment. George has recently got interested in it, and now wants to apply it to his home and bring harmony to it.
There is a practice which says that bare floor is bad for living area since spiritual energy drains through it, so George purchased two similar round-shaped carpets (feng shui says that straight lines and sharp corners must be avoided). Unfortunately, he is unable to cover the floor entirely since the room has shape of a convex polygon. But he still wants to minimize the uncovered area by selecting the best placing for his carpets, and asks you to help.
You need to place two carpets in the room so that the total area covered by both carpets is maximal possible. The carpets may overlap, but they may not be cut or folded (including cutting or folding along the floor border) — feng shui tells to avoid straight lines.
Input
The first line of the input file contains two integer numbers n and r — the number of corners in George’s room (3 ≤ n ≤ 100) and the radius of the carpets (1 ≤ r ≤ 1000, both carpets have the same radius). The following n lines contain two integers xi and yi each — coordinates of the i-th corner (−1000 ≤ xi, yi ≤ 1000). Coordinates of all corners are different, and adjacent walls of the room are not collinear. The corners are listed in clockwise order.
Output
Write four numbers x1, y1, x2, y2 to the output file, where (x1, y1) and (x2, y2) denote the spots where carpet centers should be placed. Coordinates must be precise up to 4 digits after the decimal point.
If there are multiple optimal placements available, return any of them. The input data guarantees that at least one solution exists.
Sample Input
| #1 | 5 2 -2 0 -5 3 0 8 7 3 5 0 |
|---|---|
| #2 | 4 3 0 0 0 8 10 8 10 0 |
Sample Output
| #1 | -2 3 3 2.5 |
|---|---|
| #2 | 3 5 7 3 |
/*
poj 3384 给你一个多边形,然后往里面放两个圆,问能够占的最大面积.
即相当于在能够放下两个圆的情况下使圆形离得尽可能的远. 如果将多边形的每条边往里面平移半径的长度R.那么剩下的多边形就是圆心的取点范围
然后在这个基础上枚举点即可. 主要是通过剩下的这些线段构成一个新的多边形,然后枚举它的顶点即可。
但是平移后的多边形的边的长度莫有变诶,所以可以看成多条直线围成的多边形。
那么就成了半平面交问题(即给你直线和图形在这条直线的哪一边,然后构成的多边形) hhh-2016-05-17 19:55:56
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const int maxn = 300;
const double PI = 3.1415926;
const double eps = 1e-10; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
double k;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
k = atan2(t.y-s.y,t.x-s.x);
}
Point operator &(const Line &b) const
{
Point res = s;
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return res;
}
}; bool HPIcmp(Line a,Line b)
{
if(fabs(a.k-b.k) > eps) return a.k<b.k;
return ((a.s-b.s)^(b.t-b.s)) < 0;
}
Line li[maxn]; double CalArea(Point p[],int n)
{
double ans = 0;
for(int i = 0; i < n; i++)
{
ans += (p[i]^p[(i+1)%n])/2;
}
return ans;
} double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} void HPI(Line line[],int n,Point res[],int &resn)
{
int tot =n;
sort(line,line+n,HPIcmp);
tot = 1;
for(int i = 1; i < n; i++)
{
if(fabs(line[i].k - line[i-1].k) > eps)
line[tot++] = line[i];
}
int head = 0,tail = 1;
li[0] = line[0];
li[1] = line[1];
resn = 0;
for(int i = 2; i < tot; i++)
{
if(fabs((li[tail].t-li[tail].s)^(li[tail-1].t-li[tail-1].s)) < eps||
fabs((li[head].t-li[head].s)^(li[head+1].t-li[head+1].s)) < eps)
return;
while(head < tail && (((li[tail] & li[tail-1]) - line[i].s) ^ (line[i].t-line[i].s)) > eps)
tail--;
while(head < tail && (((li[head] & li[head+1]) - line[i].s) ^ (line[i].t-line[i].s)) > eps)
head++;
li[++tail] = line[i];
}
while(head < tail && (((li[tail] & li[tail-1]) - li[head].s) ^ (li[head].t-li[head].s)) > eps)
tail--;
while(head < tail && (((li[head] & li[head-1]) - li[tail].s) ^ (li[tail].t-li[tail].t)) > eps)
head++;
if(tail <= head+1)
return;
for(int i = head; i < tail; i++)
res[resn++] = li[i]&li[i+1];
if(head < tail-1)
res[resn++] = li[head]&li[tail];
double Mans = -1;
int ansi,ansj;
for(int i = 0; i < resn; i++)
{
for(int j = 0; j < resn; j++)
if( sgn(dist(res[i],res[j])-Mans) >= 0)
{
Mans = dist(res[i],res[j]) ;
ansi = i,ansj = j;
}
}
printf("%.4f %.4f %.4f %.4f\n",res[ansi].x,res[ansi].y,res[ansj].x,res[ansj].y);
}
Point p0;
Point lis[maxn];
Line line[maxn];
bool cmp(Point a,Point b)
{
double t = (a-p0)^(b-p0);
if(sgn(t) > 0)return true;
else if(sgn(t) == 0 && sgn(dist(a,lis[0])-dist(b,lis[0])) <= 0)
return true;
else
return false;
} Point ta,tb;
Point tans[maxn];
void fin(Point a,Point b,double mid)
{
double len = dist(a,b);
double dx = (a.y-b.y)*mid/len;
double dy = (b.x-a.x)*mid/len;
ta.x = a.x+dx,ta.y = a.y+dy;
tb.x = b.x+dx,tb.y = b.y+dy;
} int main()
{
//freopen("in.txt","r",stdin);
int n;
double r;
while(scanf("%d%lf",&n,&r)!= EOF)
{
for(int i = 0; i < n; i++)
{
scanf("%lf%lf",&lis[i].x,&lis[i].y);
}
reverse(lis,lis+n);
for(int i = 0; i < n; i++)
{
fin(lis[i],lis[(i+1)%n],r);
line[i] = Line(ta,tb);
}
int resn;
HPI(line,n,tans,resn);
}
return 0;
}
poj 3384 半平面交的更多相关文章
- POJ 3384 Feng Shui 半平面交
题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...
- POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交
题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...
- 【kuangbin专题】计算几何_半平面交
1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...
- 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交
4515: [Sdoi2016]游戏 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 304 Solved: 129[Submit][Status][ ...
- poj3335 半平面交
题意:给出一多边形.判断多边形是否存在一点,使得多边形边界上的所有点都能看见该点. sol:在纸上随手画画就可以找出规律:按逆时针顺序连接所有点.然后找出这些line的半平面交. 题中给出的点已经按顺 ...
- POJ3525 半平面交
题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...
- bzoj2618[Cqoi2006]凸多边形 半平面交
这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方 ...
- BZOJ2618[Cqoi2006]凸多边形——半平面交
题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...
- 洛谷P3222 [HNOI2012]射箭(计算几何,半平面交,双端队列)
洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid ...
随机推荐
- python 一篇搞定所有的异常处理
一:什么是异常? 异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行. 一般情况下,在python无法正常处理程序时就会发生一个异常(异常是python对象,表示一个错误) 异常就是 ...
- vue.js+socket.io+express+mongodb打造在线聊天
vue.js+socket.io+express+mongodb打造在线聊天 在线地址观看 http://www.chenleiming.com github地址 https://github.com ...
- ajax 操作
ajax 操作 ajax呢,就是要做到在神不知鬼不觉的情况之下给服务端发送请求. ajax能干啥哩? 这,,,,: 利用AJAX可以做:1.注册时,输入用户名自动检测用户是否已经存在.2.登陆时,提示 ...
- mysql常用命令整理
#不压缩备份 mysqldump -u root -p userpassword databasename > /tmp/backupfile.sql #压缩备份 mysqldump -u ro ...
- 作业五:RE 模块模拟计算器
# !/usr/bin/env python3 # _*_coding:utf-8_*_ ''' 实现模拟计算器的功能: 公式: - * ( (- +(-/) * (-*/ + /*/* + * / ...
- ELK学习总结(2-4)bulk 批量操作-实现多个文档的创建、索引、更新和删除
bulk 批量操作-实现多个文档的创建.索引.更新和删除 ----------------------------------------------------------------------- ...
- 云计算学习(5-1)云平台产品介绍-华为的FusionCloud产品
FusionSphere云平台:继承了虚拟化和云管理系统,为企业构建私有云 FusionManager:云管理平台(管理计算虚拟化.网络虚拟化.存储虚拟化) FusionCompute.Fusion ...
- Spring-Boot导入配置文件与取值
前言: springboot简化了大量配置文件,但是必要时还是需要导入配置文件的,比如dubbo,此处简记之. 正文: 所有的配置文件引入都是使用注解在类上进行引入的,常用的有两种注解@Propert ...
- jQuery serialize()方法获取不到数据,alert结果为空
网上查找,问题可能是 id有重复 经排查,没有发现重复id 解决方案 form表单中每个input框都没有name属性,添加name属性即可 若name属性与jQuery的关键字有冲突,也可导致该问题 ...
- mongodb聚合的使用
聚合: 主要用于计算和统计等,类似sql种的sum() avg() db.集合.aggregate( { 管道:{表达式} } ) 常用的管道: $group:将集合中的文档按照字段进行分组 $mat ...