Feng Shui
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 5183   Accepted: 1548   Special Judge

Description

Feng shui is the ancient Chinese practice of placement and arrangement of space to achieve harmony with the environment. George has recently got interested in it, and now wants to apply it to his home and bring harmony to it.

There is a practice which says that bare floor is bad for living area since spiritual energy drains through it, so George purchased two similar round-shaped carpets (feng shui says that straight lines and sharp corners must be avoided). Unfortunately, he is unable to cover the floor entirely since the room has shape of a convex polygon. But he still wants to minimize the uncovered area by selecting the best placing for his carpets, and asks you to help.

You need to place two carpets in the room so that the total area covered by both carpets is maximal possible. The carpets may overlap, but they may not be cut or folded (including cutting or folding along the floor border) — feng shui tells to avoid straight lines.

Input

The first line of the input file contains two integer numbers n and r — the number of corners in George’s room (3 ≤ n ≤ 100) and the radius of the carpets (1 ≤ r ≤ 1000, both carpets have the same radius). The following n lines contain two integers xi and yi each — coordinates of the i-th corner (−1000 ≤ xiyi ≤ 1000). Coordinates of all corners are different, and adjacent walls of the room are not collinear. The corners are listed in clockwise order.

Output

Write four numbers x1y1x2y2 to the output file, where (x1y1) and (x2y2) denote the spots where carpet centers should be placed. Coordinates must be precise up to 4 digits after the decimal point.

If there are multiple optimal placements available, return any of them. The input data guarantees that at least one solution exists.

Sample Input

#1 5 2
-2 0
-5 3
0 8
7 3
5 0
#2 4 3
0 0
0 8
10 8
10 0

Sample Output

#1 -2 3 3 2.5
#2 3 5 7 3
/*
poj 3384 给你一个多边形,然后往里面放两个圆,问能够占的最大面积.
即相当于在能够放下两个圆的情况下使圆形离得尽可能的远. 如果将多边形的每条边往里面平移半径的长度R.那么剩下的多边形就是圆心的取点范围
然后在这个基础上枚举点即可. 主要是通过剩下的这些线段构成一个新的多边形,然后枚举它的顶点即可。
但是平移后的多边形的边的长度莫有变诶,所以可以看成多条直线围成的多边形。
那么就成了半平面交问题(即给你直线和图形在这条直线的哪一边,然后构成的多边形) hhh-2016-05-17 19:55:56
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1)
typedef long long ll;
using namespace std;
const int maxn = 300;
const double PI = 3.1415926;
const double eps = 1e-10; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
double k;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
k = atan2(t.y-s.y,t.x-s.x);
}
Point operator &(const Line &b) const
{
Point res = s;
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return res;
}
}; bool HPIcmp(Line a,Line b)
{
if(fabs(a.k-b.k) > eps) return a.k<b.k;
return ((a.s-b.s)^(b.t-b.s)) < 0;
}
Line li[maxn]; double CalArea(Point p[],int n)
{
double ans = 0;
for(int i = 0; i < n; i++)
{
ans += (p[i]^p[(i+1)%n])/2;
}
return ans;
} double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} void HPI(Line line[],int n,Point res[],int &resn)
{
int tot =n;
sort(line,line+n,HPIcmp);
tot = 1;
for(int i = 1; i < n; i++)
{
if(fabs(line[i].k - line[i-1].k) > eps)
line[tot++] = line[i];
}
int head = 0,tail = 1;
li[0] = line[0];
li[1] = line[1];
resn = 0;
for(int i = 2; i < tot; i++)
{
if(fabs((li[tail].t-li[tail].s)^(li[tail-1].t-li[tail-1].s)) < eps||
fabs((li[head].t-li[head].s)^(li[head+1].t-li[head+1].s)) < eps)
return;
while(head < tail && (((li[tail] & li[tail-1]) - line[i].s) ^ (line[i].t-line[i].s)) > eps)
tail--;
while(head < tail && (((li[head] & li[head+1]) - line[i].s) ^ (line[i].t-line[i].s)) > eps)
head++;
li[++tail] = line[i];
}
while(head < tail && (((li[tail] & li[tail-1]) - li[head].s) ^ (li[head].t-li[head].s)) > eps)
tail--;
while(head < tail && (((li[head] & li[head-1]) - li[tail].s) ^ (li[tail].t-li[tail].t)) > eps)
head++;
if(tail <= head+1)
return;
for(int i = head; i < tail; i++)
res[resn++] = li[i]&li[i+1];
if(head < tail-1)
res[resn++] = li[head]&li[tail];
double Mans = -1;
int ansi,ansj;
for(int i = 0; i < resn; i++)
{
for(int j = 0; j < resn; j++)
if( sgn(dist(res[i],res[j])-Mans) >= 0)
{
Mans = dist(res[i],res[j]) ;
ansi = i,ansj = j;
}
}
printf("%.4f %.4f %.4f %.4f\n",res[ansi].x,res[ansi].y,res[ansj].x,res[ansj].y);
}
Point p0;
Point lis[maxn];
Line line[maxn];
bool cmp(Point a,Point b)
{
double t = (a-p0)^(b-p0);
if(sgn(t) > 0)return true;
else if(sgn(t) == 0 && sgn(dist(a,lis[0])-dist(b,lis[0])) <= 0)
return true;
else
return false;
} Point ta,tb;
Point tans[maxn];
void fin(Point a,Point b,double mid)
{
double len = dist(a,b);
double dx = (a.y-b.y)*mid/len;
double dy = (b.x-a.x)*mid/len;
ta.x = a.x+dx,ta.y = a.y+dy;
tb.x = b.x+dx,tb.y = b.y+dy;
} int main()
{
//freopen("in.txt","r",stdin);
int n;
double r;
while(scanf("%d%lf",&n,&r)!= EOF)
{
for(int i = 0; i < n; i++)
{
scanf("%lf%lf",&lis[i].x,&lis[i].y);
}
reverse(lis,lis+n);
for(int i = 0; i < n; i++)
{
fin(lis[i],lis[(i+1)%n],r);
line[i] = Line(ta,tb);
}
int resn;
HPI(line,n,tans,resn);
}
return 0;
}

  

poj 3384 半平面交的更多相关文章

  1. POJ 3384 Feng Shui 半平面交

    题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...

  2. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  3. 【kuangbin专题】计算几何_半平面交

    1.poj3335 Rotating Scoreboard 传送:http://poj.org/problem?id=3335 题意:就是有个球场,球场的形状是个凸多边形,然后观众是坐在多边形的边上的 ...

  4. 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交

    4515: [Sdoi2016]游戏 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 304  Solved: 129[Submit][Status][ ...

  5. poj3335 半平面交

    题意:给出一多边形.判断多边形是否存在一点,使得多边形边界上的所有点都能看见该点. sol:在纸上随手画画就可以找出规律:按逆时针顺序连接所有点.然后找出这些line的半平面交. 题中给出的点已经按顺 ...

  6. POJ3525 半平面交

    题意:求某凸多边形内部离边界最远的点到边界的距离 首先介绍半平面.半平面交的概念: 半平面:对于一条有向直线,它的方向的左手侧就是它所划定的半平面范围.如图所示: 半平面交:多个半平面的交集.有点类似 ...

  7. bzoj2618[Cqoi2006]凸多边形 半平面交

    这是一道半平面交的裸题,第一次写半平面交,就说一说我对半平面交的理解吧. 所谓半平面交,就是求一大堆二元一次不等式的交集,而每个二元一次不等式的解集都可以看成是在一条直线的上方或下方,联系直线的标准方 ...

  8. BZOJ2618[Cqoi2006]凸多边形——半平面交

    题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...

  9. 洛谷P3222 [HNOI2012]射箭(计算几何,半平面交,双端队列)

    洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid ...

随机推荐

  1. 库函数strstr的实现

    没什么说的,常规思路: 函数原型:const char* StrStr(const char *str1, const char *str2) 方法一: str1:源字符串: str2:需要查找的目的 ...

  2. centos 安装配置 mysql

    安装环境:CentOS7 64位 MINI版,安装MySQL5.7 1.配置YUM源 在MySQL官网中下载YUM源rpm安装包:http://dev.mysql.com/downloads/repo ...

  3. loadrunner下载资源时步骤下载超时 (120 seconds) 已过期

    下载资源所用时间超过120秒时,就会报出这个错误,解决方法是设置加大超时时间 运行时设置(快捷键F4) Internet 协议--首选项--高级--选项--General--步骤下载超时(秒) 可以把 ...

  4. EVA 4400存储硬盘故障数据恢复方案和数据恢复过程

    EVA系列存储是一款以虚拟化存储为实现目的的HP中高端存储设备,平时数据会不断的迁移,加上任务通常较为繁重,所以磁盘的负载相对是较重的,也是很容易出现故障的.EVA是依靠大量磁盘的冗余空间,以及故障后 ...

  5. 我自己总结的C#开发命名规范整理了一份

    我自己总结的C#开发命名规范整理了一份 标签: 开发规范文档标准语言 2014-06-27 22:58 3165人阅读 评论(1) 收藏 举报  分类: C#(39)  版权声明:本文为博主原创文章, ...

  6. springboot多模块项目下,子模块调用报错:程序包xxxxx不存在

    今天在用springboot搭建多模块项目,结构中有一个父工程Parent  一个通用核心工程core 以及一个项目工程A 当我在工程A中引入core时,没有问题,maven install正常 当我 ...

  7. SpringCloud应用入库后乱码问题

    一.现象 1.请求 2.入库后 二.解决过程 1.配置application.properties 2.代码配置 3.数据库(关键!!) 3.请求 三.验证过程 1.win10 - 本地验证通过 2. ...

  8. django的models模型 关联关系和关系查询

    模型类关系 关系字段类型 关系型数据库的关系包括三种类型: ForeignKey:一对多,将字段定义在多的一端中. ManyToManyField:多对多,将字段定义在两端中. OneToOneFie ...

  9. FPGA与MATLAB数据交互高效率验证算法——仿真阶段

    之前博文是对基本设计技巧的总结和一些小设计随笔,内容有点杂,缺乏目的性.本来后续计划设计几个小项目,但导师的任务比较紧,所以为了提高效率,后续博客会涉及到很多算法方面的设计与验证的内容,主要关于OFD ...

  10. [BZOJ4011][HNOI2015] 落忆枫音(学习笔记) - 拓扑+DP

    其实就是贴一下防止自己忘了,毕竟看了题解才做出来 Orz PoPoQQQ 原文链接 Description 背景太长了 给定一个DAG,和一对点(x, y), 在DAG中由x到y连一条有向边,求生成树 ...